首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface Enhanced Raman Scattering (SERS) has undergone an important development over the last few years, particularly in the detection and identification of extremely low traces of explosives. The large number of studies and results generated by this increasing research makes a comprehensive overview necessary. This work reviews in detail that research focused on the identification of explosives by SERS, including TNT, DNT, RDX, PETN, TATP, HMTD, perchlorate, etc. either in bulk state, in solution or in vapor phase. In brief, TNT and DNT have been widely studied by SERS due to its aromatic structure and LODs down to 5–10 zg and 10?17–10?13 M have been achieved. The other explosives have been quite less researched; therefore, few results are available to be compared and a bit more modest LODs have been reached such as 10?13 M for RDX, 10?4 M for TATP, 5 pg for PETN, or 10?9 M for perchlorate. In addition, the challenges of detecting both explosives vapors and perchlorate anion by SERS are thoroughly discussed.  相似文献   

2.
The FTIR spectra of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and pentaerythritol tetranitrate (PETN) in the vapor phase over wide frequency (3500–500 cm?1) and temperature ranges (293–383 K) is experimentally studied and the assignment of the observed vibrational bands is performed. To clarify the nature of the physicochemical processes that occur during the heating and evaporation of RDX and PETN and to detect and identify their characteristic components, the mass spectra and sub-THz spectra of these explosives are studied. To obtain spectroscopic information, special experimental techniques for recording of IR, sub-THz, and mass spectra of vapors of explosives and for preparation of high-purity RDX and PETN samples (with a main substance content of >99.7%) are developed based on modern methods of synthesis and purification.  相似文献   

3.
Beginning in 1972 nuclear magnetic resonance (NMR) technologies for detecting explosives and illegal contraband were developed and evaluated at the Southwest Research Institute. Fullscale systems on the basis of hydrogen transient NMR were developed and evaluated in laboratory and field tests with generally favorable results but with some limitations. These included (1) an experimental, mobile system for detecting buried, nonmetallic land mines; (2) an instrument for inspection of letters and small parcels for small quantities of explosives or illegal drugs; (3) a system for inspection of checked airline baggage and air cargo for concealed explosives and illegal drugs; and (4) a system for rapid inspection of quantities of mail for illegal drugs.1H NMR offers high sensitivity and detects high-energy explosives such as RDX, TNT, and PETN, as well as nitroglycerine and ammonium-nitrate-based explosives and illegal drugs. Challenges in both physics and engineering were successfully addressed to achieve the goals of rapid inspection with low false-alarm and high detection probability. Electron paramagnetic resonance was found suitable for detecting black powder in laboratory tests as was nuclear quadrupole resonance for a few high-energy explosives. Low-field1H NMR was also explored in the laboratory to make it practical for explosives detection and found to have potential, but numerous implementation problems must be overcome.  相似文献   

4.
Nuclear quadrupole resonance (NQR) of14N nuclei has many advantages as a method for detecting nitrogen-containing explosives, the most important are very high chemical specificity, true noninvasive operation and detection of bulk explosive in situ only (no vapor or particular capture needed). One of the most high explosives is hexogen (RDX) often used by terrorists in plasticized forms. The ring nitrogen nuclei in an RDX molecule generate three sets of NQR frequencies corresponding to three physically nonequivalent positions of the molecule in the crystal lattice. The prototype device we have constructed is intended for inspection of suitcases for the presence of plastic explosives containing RDX or octogen by14N quadrupole resonance. It is essentially a fully automated PC-controlled pulsed FT NQR spectrometer equipped with a large volume (70 1) radio-frequency (RF) sample coil to accommodate a typical suitcase. The device consists of a measure chamber with an RF coil, tuning and matching box, an RF pulse transmitter and a control PC with dedicated cards like digital receiver, frequency synthesizer, pulse programmer and probe-tuning controller. The control software finds the NQR lines and measures their frequencies. An alarm is produced if any of these frequencies matches the characteristic NQR frequency of the explosive and the signal-tonoise ratio exceeds the preset threshold. Multipulse sequences of the type SORC (strong off-resonance comb) or SLSE (spin-locked spin echo) were used in order to increase the allowed data acquisition rate. We could detect 230 g of PMW-8, a plastic explosive (containing 81% of RDX) in 10 s or 100 g in 30 s. Detection probability was not less than 90%.  相似文献   

5.
Detection of explosives is an important challenge for contemporary science and technology of security systems. We present an application of NOx sensors equipped with concentrator in searching of explosives. The sensors using CRDS with blue — violet diode lasers (410 nm) as well as with QCL lasers (5.26 μm and 4.53 μm) are described. The detection method is based either on reaction of the sensors to the nitrogen oxides emitted by explosives or to NOx produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX, and HMX the detection limit better than 1 ng has been achieved.  相似文献   

6.
A novel instrument, based on cavity-ringdown spectroscopy (CRDS), has been developed for trace gas detection. The new instrument utilizes a widely tunable optical parametric oscillator (OPO), which incorporates a zinc–germanium–phosphide (ZGP) crystal that is pumped at 2.8 μm by a 25-Hz Er,Cr:YSGG laser. The resultant mid-IR beam profile is nearly Gaussian, with energies exceeding 200 μJ/pulse between 6 and 8 μm, corresponding to a quantum conversion efficiency of approximately 35%. Vapor-phase mid-infrared spectra of common explosives (TNT, TATP, RDX, PETN and Tetryl) were acquired using the CRDS technique. Parts-per-billion concentration levels were readily detected with no sample preconcentration. A collection/flash-heating sequence was implemented in order to enhance detection limits for ambient air sampling. Detection limits as low as 75 ppt for TNT are expected, with similar concentration levels for the other explosives. Received: 1 April 2002 / Revised version: 13 June 2002 / Published online: 12 September 2002 RID="*" ID="*"Corresponding author. Fax: +1-408/524-0551, E-mail: mtodd@picarro.com  相似文献   

7.
利用核四极矩共振技术探测炸药   总被引:1,自引:0,他引:1  
介绍了用核四极矩共振的原理进行爆炸危险物品检测的方法及实验测试系统. 该系统运用特殊的激励信号来激发被检测样品中所含的特殊元素14N(炸药的主要成分),使其产生核四极矩共振,并产生辐射,从而达到检测的目的. 由于该辐射信号的能量非常小(10 nV量级),在通常的环境中很难检测该信号, 这就对此弱信号的检测和提取提出了很高的要求. 本测试系统使用了一系列有效的组合激励信号及弱信号采集、处理技术,在通常环境中成功地检测到了RDX(黑索金)信号.  相似文献   

8.
This paper focuses on the use of poly (vinyl alcohol)-shelled microbubbles as a contrast agent in ultrasound medical imaging. The objective was an in vitro assessment of the different working conditions and signal processing methods for the visual detection (especially in small vessels) of such microbubbles, while avoiding their destruction. Polymer-shelled microbubbles have recently been proposed as ultrasound contrast agents with some important advantages. The major drawback is a shell that is less elastic than that of the traditional lipidic microbubbles. Weaker echoes are expected, and their detection at low concentrations may be critical. In vitro experiments were performed with a commercial ultrasound scanner equipped with a dedicated acquisition board. A concentration of 100 bubbles/mm3, excitation pressure amplitudes from 120 kPa to 320 kPa, and a central frequency of 3 MHz or 4.5 MHz were used. Three multi-pulse techniques (i.e., pulse inversion, contrast pulse sequence based on three transmitted signals, and contrast pulse sequence in combination with the chirp pulse) were compared. The results confirmed that these microbubbles produce a weaker ultrasound response than lipidic bubbles with a reduced second-order nonlinear component. Nevertheless, these microbubbles can be detected by the contrast pulse sequence technique, especially when the chirp pulse is adopted. The best value of the contrast-to-tissue ratio was obtained at an excitation pressure amplitude of 230 kPa: although this pressure amplitude is higher than what is typically used for lipidic microbubbles, it does not cause the rupture of the polymeric contrast agent.  相似文献   

9.
We report a pulsed doubly resonant optical parametric oscillator that uses an original entangled-cavity geometry. This compact source (total volume of 1 L, including the pump laser) displays single-frequency operation (linewidth, <100 MHz), a high repetition rate (>10 kHz), low threshold (<10 muJ), and wide tuning in the mid-infrared. These properties qualify pulsed doubly resonant optical parametric oscillators as powerful tools for applications in such fields as nonlinear spectroscopy, lidar, and pollutant detection.  相似文献   

10.
We report on what we believe to be the first demonstration of active mode locking of an optical parametric oscillator. An acousto-optic modulator is inserted into a nearly degenerate (approximately 1064 nm) and doubly resonant optical parametric oscillator based on periodically poled LiNbO3 and pumped with the second harmonic of a quasi-continuous-wave single-frequency Nd:YAG laser. When the modulation frequency is matched to the free spectral range of the cavity (120 MHz), a pulsed regime is observed, with pulse durations as short as 700 ps.  相似文献   

11.
A method for measuring the electroconductivity profiles behind the detonation front in dense solid high explosives with a resolution of 0.1 mm was developed. The method has a measurement range more than an order of magnitude wider than the available methods. During the detonation of pressed PETN, RDX, and HMX, an electroconductivity peak with an amplitude of several Ω?1 cm?1 and a width of 40 to 70 ns was observed. The peak width is in agreement with the available data on the width of the chemical reaction zone. The peak is accompanied by a tail with an electroconductivity several times lower.  相似文献   

12.
本文在多原子强耦合腔-QED系统中,利用脉冲宽度为5 ns的强脉冲光在垂直于腔轴方向直接激发原子,脉冲的峰值功率为40 mW,通过光学腔观测激发原子辐射到腔中的光子获得相应的激发光谱。我们发现当光场频率和原子跃迁失谐±80 MHz时原子激发率达到最大,而在共振时原子激发被抑制。我们建立了脉冲光与三能级原子相互作用的模型,通过缀饰态能够解释此现象。  相似文献   

13.
We investigate the possibility of controlling the radiation parameters of a spatially periodic one-dimensional medium consisting of classical harmonic oscillators by means of a sequence of ultrashort pulses that propagate through the medium with a superluminal velocity. We show that, in the spectrum of the transient process, in addition to the radiation at a resonant frequency of oscillators, new frequencies arise that depend on the period of the spatial distribution of the oscillator density, the excitation velocity, and the angle of observation. We have examined in detail the case of excitation of the medium by a periodic sequence of ultrashort pulses that travel with a superluminal velocity. We show that it is possible to excite oscillations of complex shapes and to control the radiation parameters of the resonant medium by changing the relationship between the pulse repetition rate, the medium resonant frequency, and the new frequency.  相似文献   

14.
The process of forming doubly charged ions in ionization of Sr atoms by laser radiation in the frequency region of 8200–9100 cm?1 is studied experimentally. The resonant structure of the yield of these ions as a function of the radiation frequency is found to be determined by the excitation of strongly perturbed states of Sr atoms.  相似文献   

15.
We generated 1 mW of average output power at 2.8 THz (bandwidth of approximately 300 GHz) in a diffraction-limited beam by placing a 6-mm-long quasi-phase-matched GaAs crystal inside the cavity of a synchronously pumped optical parametric oscillator (OPO). The OPO used type-II-phase-matched periodically poled lithium niobate as a gain medium and was pumped by a mode-locked laser at 1064 nm, with a 7 ps pulse duration, 50 MHz repetition rate, and 10 W average output power. The terahertz radiation was generated by difference frequency mixing between the signal and idler waves of the near-degenerate doubly resonant OPO.  相似文献   

16.
We introduce a method for determination of the absolute frequencies of comb lines within an optical frequency comb spectrum. The method utilizes the experimental and theoretical approach of the velocity-selective optical pumping of the atomic ground state hyperfine levels induced by resonant pulse-train excitation. The information on the laser pulse repetition frequency and carrier–envelope offset are physically mapped onto the 87Rb ground state hyperfine level population velocity distributions. Theoretical spectra are calculated using an iterative analytic solution of the optical Bloch equations describing the resonant pulse-train excitation of four-level 87Rb atoms. They are employed to fit the measured spectra and obtain the parameters of the frequency comb, thus providing a practical algorithm which can be used in real-time measurements.  相似文献   

17.
We present direct observation of the velocity-selective optical pumping of the Cs ground state hyperfine levels induced by the femtosecond (fs) laser oscillator centered at either D2 (6 2S1/2↦6 2P3/2, 852 nm) or D1 (6 P1/2, 894 nm) cesium line. We utilized previously developed modified direct frequency comb spectroscopy (DFCS) which uses a fixed frequency comb for the excitation and a weak cw scanning probe laser centered at the 133Cs 6 2S1/2↦6 2P3/2 transition (D2 line) for ground levels population monitoring. The frequency comb excitation changes the usual Doppler absorption profile into a specific periodic, comblike structure. The mechanism of the velocity selective population transfer between the Cs ground state hyperfine levels induced by fs pulse train excitation is verified in a theoretical treatment of the multilevel atomic system subjected to a pulse train resonant field interaction.  相似文献   

18.
We present experimental conditions that lead to high-quality Cu2+-based double electron electron resonance (DEER) data. Such experiments are feasible at temperature of about 20 K, and sample concentrations in the range of 0.15–1.5 mM. By systematically investigating the effects of pulse lengths, we find that observer π pulse lengths of 20–48 ns provide reasonable modulation depths as well as signals. The length of the pump pulse needs to be minimized (16 ns in our case). For a Cu2+–Cu2+ DEER measurement, the optimal frequency offset is about 100 MHz. For a Cu2+–nitroxide DEER measurement, the frequency offset is often varied in the range of 100–500 MHz, to probe orientational selectivity. For both cases, the frequency of the pump pulse should be smaller than the observer pulse in order to obtain a larger modulation depth.  相似文献   

19.
A resonant cavity vircator (virtual cathode oscillator) driven by an electron beam emitted from a broad-area thermionic cathode is tested. Narrow-bandwidth (1.0 MHz at the -3 dB level) excitation of the TM023 mode of a cylindrical resonant cavity is observed at a frequency of 986 MHz with a pulselength of 1.2 μs. The single-cavity-mode excitation is attributed to the constant-voltage and -current electron beam emitted from the thermionic cathode  相似文献   

20.
A new 3D pulse sequence correlates backbone amide proton and nitrogen with alpha proton resonances selectively for glycine residues in a fully doubly labeled (15N,13C) protein. The excitation of multiple quantum coherences provides optimized resolution and sensitivity. Degenerate alpha proton groups can be promptly recognized. Correlation of guanidine NH groups to delta protons of arginine side chains is also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号