首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new and convenient route is developed to synthesize CdSe and core-shell CdSe/CdS quantum dots(QDs) in aqueous solution.The gaseous precursors,H2Se and H2S,generated on-line by reducing SeO 3 2à with NaBH 4 and the reaction between Na 2 S and diluted H2SO 4,are used to form high-quality CdSe and CdSe/CdS QDs,respectively.The synthesized water-soluble CdSe and CdSe/CdS QDs possess high quantum yield(3% and 20%) and narrow full-width-at-half-maximum(43 nm and 38 nm).The synthesis process is easily reproducible with simple apparatus and low-toxic chemicals,and can be readily extended to the large-scale aqueous synthesis of QDs.  相似文献   

2.
We report a new green synthetic route of CdSe and core-shell CdSe/CdS nanoparticles (NPs) in aqueous solutions. This route is performed under water-bath temperature, using Se powder as a selenium source to prepare CdSe NPs, and H(2)S generated by the reaction of Na(2)SH(2)SO(4) as a sulfur source to synthesize core-shell CdSe/CdS NPs at 25-35 degrees C. The synthesis time of every step is only 20 min. After illumination with ambient natural light, photoluminescence (PL) intensities of CdSe NPs enhanced up to 100 times. The core-shell CdSe/CdS NPs have stronger photoactive luminescence with quantum yields over 20%. The obtained CdSe NPs exhibit a favorable narrow PL band (FWHM: 50-37 nm) with increasing molar ratio of Cd/Se from 4:1 to 10:1 at pH 9.1 in the crude solution, whereas PL band of corresponding CdSe/CdS NPs is slightly narrower. The emission maxima of nanocrystals can be tuned in a wider range from 492 to 592 nm in water by changing synthesis temperature of CdSe core than those reported previously. The resulting new route is of particular interest as it uses readily-available reagents and simple equipment to synthesize high-quality water-soluble CdSe and CdSe/CdS nanocrystals.  相似文献   

3.
以CdCl2和Te粉为原料,在水相中合成了CdTe量子点核;通过外延生长在CdTe量子点核上包覆一层CdSe量子点,得到具有良好荧光性能的CdTe/CdSe核壳量子点;采用X射线衍射仪、透射电镜、高分辨透射电镜分析了不同反应条件下合成的CdTe/CdSe核壳量子点的晶体结构和微观结构,并对其进行了荧光光谱等测试和指纹显现分析.结果表明,合成的CdTe和CdTe/CdSe量子点粒径在3~5nm之间,粒径分布窄,水分散性良好;可以通过控制反应时间和Te/Se比等得到在500~700nm显示荧光发射峰的CdTe/CdSe核壳量子点.此外,核壳CdTe/CdSe量子点可以有效地和指纹物质结合,可应用于对铝合金油潜指纹的鉴别.  相似文献   

4.
采用两相法合成了CdSe/CdS核-壳结构的量子点, 用氨水催化水解正硅酸乙酯制得复合结构的CdSe/CdS/SiO2发光纳米球. 通过对量子点用量、氨水用量、反应时间及溶剂比例等实验条件的调节, 得到了单分散性较好, 尺寸在23~145 nm的复合发光纳米球. 利用紫外-可见吸收光谱和荧光发射光谱对其发光性能进行了研究, 同时利用透射电镜(TEM)观察复合纳米球的形貌. 结果表明, 复合发光纳米球样品的最高荧光量子产率可达8%.  相似文献   

5.
水溶性的CdSe/CdS/ZnS量子点的合成及表征   总被引:3,自引:0,他引:3  
L-半胱氨酸盐(Cys)作为稳定剂,合成了水溶性的双壳结构的CdSe/CdS/ZnS半导体量子点。吸收光谱和荧光光谱结果表明,双壳结构的CdSe/CdS/ZnS纳米微粒比单一的CdSe核纳米粒子和单核壳结构的CdSe/CdS纳米粒子具有更优异的发光特性。用透射电子显微镜(TEM)、ED、XRD、XPS和FTIR等方法对CdSe核和双壳层的CdSe/CdS/ZnS纳米微粒的结构、分散性及形貌分别进行了表征。  相似文献   

6.
Toxicities of CdSe and CdSe/CdS quantum dots(QDs) synthesized by ultrasound-assisted methods were investigated in vitro and in vivo.Five human cell lines were used to assess the cytotoxicity of as-prepared CdSe and CdSe/CdS by assays of MTT viability,red blood cell hemolysis,flow cytometry,and fluorescence imaging.The results show that these QDs may be cytotoxic by their influence in S and G2 phases in cell cycles.The cytotoxicity of QDs depends on both the physicochemical properties and related to target cells.  相似文献   

7.
Hexagonal CdSe and hexagonal CdS nanoparticles have been prepared using Cd(Ac)2 and less hazardous elemental Se or S as precursors, respectively, with the aid of ultrasound irradiation under an atmosphere of H2/Ar (5/95, V/V). The products consist of 7-10 nm nanocrystallites which aggregated in the form of polydispersive nanoclusters with sizes in the range 30-40 nm in the case of CdSe, and near monodispersive nanoclusters with a mean size of about 40 nm in the case of CdS. X-ray diffraction, high-resolution TEM and SAED patterns (selected area electron diffraction patterns) show that the as-prepared particles are well crystallized. X-ray photoelectron spectroscopy (XPS) measurements further confirm the formation of CdSe and CdS. Diffuse reflection spectra indicate that both the CdSe and the CdS nanocryslallites are direct band-gap semiconductors with band-gap values of about 1.83 and 2.62 eV, respectively. Control experiments demonstrate that the hydrogen is the reducing agent, and the extreme high temperature induced by the collapse of the bubble accelerates the reduction of elemental Se or S by hydrogen. An ultrasound assisted in situ reduction/combination mechanism is proposed.  相似文献   

8.
Successive ion layer adsorption and reaction (SILAR) originally developed for the deposition of thin films on solid substrates from solution baths is introduced as a technique for the growth of high-quality core/shell nanocrystals of compound semiconductors. The growth of the shell was designed to grow one monolayer at a time by alternating injections of air-stable and inexpensive cationic and anionic precursors into the reaction mixture with core nanocrystals. The principles of SILAR were demonstrated by the CdSe/CdS core/shell model system using its shell-thickness-dependent optical spectra as the probes with CdO and elemental S as the precursors. For this reaction system, a relatively high temperature, about 220-240 degrees C, was found to be essential for SILAR to fully occur. The synthesis can be readily performed on a multigram scale. The size distribution of the core/shell nanocrystals was maintained even after five monolayers of CdS shell (equivalent to about 10 times volume increase for a 3.5 nm CdSe nanocrystal) were grown onto the core nanocrystals. The epitaxial growth of the core/shell structures was verified by optical spectroscopy, TEM, XRD, and XPS. The photoluminescence quantum yield (PL QY) of the as-prepared CdSe/CdS core/shell nanocrystals ranged from 20% to 40%, and the PL full-width at half-maximum (fwhm) was maintained between 23 and 26 nm, even for those nanocrystals for which the UV-vis and PL peaks red-shifted by about 50 nm from that of the core nanocrystals. Several types of brightening phenomena were observed, some of which can further boost the PL QY of the core/shell nanocrystals. The CdSe/CdS core/shell nanocrystals were found to be superior in comparison to the highly luminescent CdSe plain core nanocrystals. The SILAR technique reported here can also be used for the growth of complex colloidal semiconductor nanostructures, such as quantum shells and colloidal quantum wells.  相似文献   

9.
A dendron ligand with two carboxylate anchoring groups at its focal point and eight hydroxyl groups as its terminal groups was found to efficiently convert as-synthesized CdSe/CdS core-shell nanocrystals in toluene to water-soluble dendron-ligand stabilized nanocrystals (dendron nanocrystals). The resulting dendron nanocrystals retained 60% of the photoluminescence value of the original CdSe/CdS core-shell nanocrystals in toluene and were significantly brighter than the similar dendron nanocrystals with thiolate (deprotonated thiol group) as the anchoring group which retained just 10% of the photoluminescence value of the original CdSe/CdS core-shell nanocrystals in toluene. The carboxylate-based dendron nanocrystals survived UV irradiation in air for at least 13 days, about 9 times better than the thiolate-based dendron nanocrystals (35 h) and similar to that of the thiolate-based dendron-box stabilized CdSe/CdS core-shell nanocrystals (box nanocrystals). Upon UV irradiation, the dendron nanocrystals became even 2 times brighter than the original CdSe/CdS core-shell nanocrystals in toluene, and the UV-brightened PL can retain the brightness for at least several months. These stable and bright dendron nanocrystals were soluble in various aqueous media, including all common biological buffer solutions tested, for at least 1.5 years. In addition to their superior performance, the synthetic chemistry of carboxylate dendron ligands and the corresponding dendron nanocrystals is relatively simple and with high yield.  相似文献   

10.
水溶性CdSe/CdS量子点的合成及其与牛血清蛋白的共轭作用   总被引:4,自引:0,他引:4  
用巯基乙酸(TGA)作为稳定剂,合成了水溶性的CdSe和核壳结构的CdSe/CdS半导体量子点。吸收光谱和荧光光谱研究表明,核壳结构的CdSe/CdS半导体量子点比单一的CdSe量子点具有更优异的发光特性。用TEM、电子衍射(ED)和XPS分别表征了CdSe和CdSe/CdS纳米微粒的结构、形貌及分散性。红外光谱和核磁共振谱证实了巯基乙酸分子中的硫原子和氧原子与纳米微粒表面的金属离子发生了配位作用。在pH值为7.4的条件下,将合成的CdSe和CdSe/CdS量子点直接与牛血清白蛋白(BSA)相互作用。实验发现,两种量子点均对BSA的荧光产生较强的静态猝灭作用;而BSA对两种量子点的荧光则具有显著的荧光增敏作用,存在BSA时CdSe/CdS量子点的荧光增强是不存在BSA时体系荧光强度的3倍。  相似文献   

11.
Semiconductor nanocrystal quantum dots have been the subject of extensive investigations in different areas of science and technology in the past years. In particular, there are few studies of magic-sized quantum dots (MSQDs), even though they exhibit features such as extremely small size, fluorescence quantum efficiency, molar absorptivity greater than traditional QDs, and highly stable luminescence in HeLa cell cultures, thereby enabling monitoring of biological or chemical processes. The present study investigated the electrochemical behavior of free CdSe/CdS MSQDs using glassy carbon electrode and CdSe/CdS MSQDs immobilized on a gold electrode modified with a self-assembled cyclodextrin monolayer. The MSQDs showed two peaks in aprotic medium. The functionalized film modifier was prepared and characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy using ferricyanide ions as a redox probe. The prepared modified electrode exhibited a stable behavior. The proposed method was successfully applied to encapsulation studies of mangiferin, a natural antioxidant compound, and cyclodextrin associated with the quantum dot, and the response was compared with that of the modified electrode without QD. The fluorescence study revealed that CdSe/CdS quantum dots emit blue light when excited by an optical source of wavelength of 350 nm and a significant increase in fluorescence and absorbance intensity is observed from the core-shell CdSe/CdS MSQDs when quantities of mangiferin are added to the solution containing thiolated cyclodextrin. CdSe/CdS MSQDs are optically and electrochemically sensitive and can be used for the detection and interaction of compounds encapsulated in cyclodextrin.  相似文献   

12.
Highly porous networks and reduced grain boundaries with one-dimensional (1-D) nanofibrous morphology offer enhanced charge transport in solar cells applications. Quantum dot (QDs) decorated TiO2 nanofibrous electrodes, unlike organic dye sensitizers, can yield multiple carrier generations due to the quantum confinement effect. This paper describes the first attempt to combine these two novel approaches, in which CdS (~18 nm) and CdSe (~8 nm) QDs are sensitized onto electrospun TiO2 nanofibrous (diameter ~80–100 nm) electrodes. The photovoltaic performances of single (CdS and CdSe) and coupled (CdS/CdSe) QDs-sensitized TiO2 fibrous electrodes are demonstrated in sandwich-type solar cells using polysulfide electrolyte. The observed difficulties in charge injection and lesser spectral coverage of single QDs-sensitizers are solved by coupling (CdS:CdSe) two QDs-sensitizers, resulting in a enhanced open-circuit voltage (0.64 V) with 2.69% efficiency. These results suggest the versatility of fibrous electrodes in QDs-sensitized solar cell applications.  相似文献   

13.
The amphiphilic stearyl methacrylate/methylacrylic acid copolymers (PSMs) were used as phase transfer reagents to convert CdSe/ZnS core-shell quantum dots (QDs) in chloroform to water-soluble PSMs-coated quantum dots (PSM-QDs). The optical properties and stability of PSM-QDs were influenced by the hydrophobic moiety ratios of PSMs, the PSM/QDs mass/volume ratio and the reaction time. The resulting PSM-QDs on optimum reaction conditions retained 60% of the photoluminescence value of the original CdSe/ZnS QDs in chloroform. The carboxylate-based PSM-QDs survived UV irradiation in air for at least 15 days. Upon UV irradiation, the PSM-QDs became about 2 times brighter than the original CdSe/ZnS QDs in chloroform, and the UV-brightened PL can retain the brightness for at least several months. Experimental results further confirmed the stability of PSM-QDs against strong acid, photochemical and thermal treatments. In addition to good performance of PSM-QDs, the synthesis of PSM and the corresponding water-soluble QDs is relatively simple.  相似文献   

14.
A silanization technique of hydrophobic quantum dots (QDs) was applied to SiO(2)-coated CdSe/Cd(x)Zn(1-x)S QDs to precisely control the SiO(2) shell thickness and retain the original high photoluminescence (PL) properties of the QDs. Hydrophobic CdSe/Cd(x)Zn(1-x)S core-shell QDs with PL peak wavelengths of 600 and 652 nm were prepared by a facile organic route by using oleic acid (OA) as a capping agent. The QDs were silanized by using partially hydrolyzed tetraethyl orthosilicate by replacing surface OA. These silanized QDs were subsequently encapsulated in a SiO(2) shell by a reverse micelles synthesis. The silanization plays an important role for the QDs to be coated with a homogeneous SiO(2) shell and retain a high PL efficiency in water. Transmission electron microscopy observation shows that the shells are 1-9 nm with final particle sizes of 10-25 nm, depending on the initial QD size. In the case of short reaction time (6 h), the QDs were coated with a very thin SiO(2) layer because no visible SiO(2) shell was observed but transferred into the water phase. The silica coating does not change the PL peak wavelength of the QDs. The full width at half-maximum of PL was decreased 4 nm after coating for QDs emitting at both 600 and 652 nm. The PL efficiency of the SiO(2)-coated is up to 40%, mainly determined by the initial PL efficiency of the underlying CdSe/Cd(x)Zn(1-x)S QDs.  相似文献   

15.
A green and simple method was found to prepare CdS/CdSe co-sensitized photoelectrodes for the quantum dots sensitized solar cells application. All the assembly processes of CdS and CdSe quantum dots (QDs) were carried out in aqueous solution. CdS and CdSe QDs were sequentially assembled onto TiO2-nano-SiO2 hybrid film by two steps. Firstly, CdS QDs were deposited in situ over TiO2-nano-SiO2 hybrid film by the successive ionic layer adsorption and reaction (SILAR) process in water. Secondly, using 3-mercaptopropionic acid (3-MPA) as a linker molecule, the pre-prepared colloidal CdSe QDs (~3.0 nm) dissolved in water was linked onto the TiO2-nano-SiO2 hybrid film by the self-assembled monolayer technique with the mode of dropwise. The mode is simple and advantageous to saving materials and time. The results show that the photovoltaic performance of the cells is enhanced with the increase of SILAR cycles for TiO2-nano-SiO2/CdS photoelectrode. The power conversion efficiency of 2.15 % was achieved using the co-sensitization photoelectrode prepared by using 6 SILAR cycles of CdS plus CdSe (TiO2-nano-SiO2/CdS(6)/CdSe) under the illumination of one sun (AM1.5, 100 mW/cm2).  相似文献   

16.
The one‐pot synthesis of water‐soluble and biologically compatible yellow CdSe quantum dots (QDs) featuring the use of glutathione (GSH) as the capping and reducing agent was achieved under aqueous conditions at 150 °C. The synthesized yellow CdSe QDs with quantum yield (QY) up to 20% exhibit zinc blende cubic structure particles with an average diameter of 4‐5 nm. It was found that both molar ratio of Se/Cd and reaction time had a significant effect on size distribution of GSH‐CdSe QDs. Meanwhile, the interaction of QDs bioconjugated to bovine hemoglobin (BHb) was studied by absorption and fluorescence(FL) spectra. With addition of BHb, the FL intensity of CdSe QDs largely quenched due to the static mechanism. The linear range is 5.0 × 10?8 mol/L to 3.0 × 10?6 mol/L, and the correlation coefficient is 0.9991, suggesting that could be used as a probe to label biological molecules and bacterial cells.  相似文献   

17.
We have developed a method for the determination of microcystin-leucine-arginine (MC-LR) in water samples that is based on the quenching of the fluorescence of bioconjugates between CdSe/CdS quantum dots (QDs) and the respective antibody after binding of MC-LR. The core-shell CdSe/CdS QDs were modified with 2-mercaptoacetic acid to improve water solubility while their high quantum yields were preserved. Monoclonal MC-LR antibody was then covalently bioconjugated to the QDs. It was found that the fluorescence intensity of the bioconjugates was quenched in the presence of MC-LR. A linear relationship exists between the extent of quenching and the concentration of MC-LR. Parameters affecting the quenching were investigated and optimized. The limit of detection is 6.9?×?10?11 mol L?1 (3σ). The method was successfully applied to the determination of MC-LR in water samples.
Figure
Bioconjugates of CdSe/CdS quantum dots and anti-microcystin-leucine-arginine (MC-LR) antibody were prepared through step A to C. Their fluorescence intensity was quenched linearly with addition of MC-LR at different concentrations (step D). A method for determination of MC-LR was thus established and it was simple, sensitive and specific with low-cost instrumentation  相似文献   

18.
A method that does not employ hot-injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with zinc blende structure. In this environmentally benign synthetic route, which uses less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and thus their optical properties can be manipulated by changing the microwave reaction conditions. The QDs were characterized by XRD, TEM, UV/Vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot-injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. Possible applications of the CdSe QDs were assessed by deposition on TiO(2) films.  相似文献   

19.
A new design for a quasi‐solid‐state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor–acceptor architecture (TiO2/CdS/CdSe/ZnS‐LY/S2?‐multi‐walled carbon nanotubes) show a maximum incident photon‐to‐current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru‐dye free FRET‐enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor‐only cells. The FRET‐enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells.  相似文献   

20.
Photoluminescence (PL) intermittency characteristics are examined for single quantum dots (QDs) in a CdSe QD sample synthesized at a slow rate at 75 degrees C. Although the PL quantum efficiency was relatively low ( approximately 0.25), we noticed that the PL intensity of single CdSe QDs fluctuated on a subsecond time scale with short-lived "on" and "off" states. The subsecond PL intensity fluctuations of CdSe QDs are different from "on" and "off" PL blinking generally observed for QDs fluctuating on a millisecond to minute time scale. We characterized single QDs by identifying polarized excitations, topographic imaging using atomic force microscopy (AFM), and transmission electron microscopy (TEM). From analysis of the PL intensity trajectories from >100 single CdSe QDs, the average intermittency time was 213 ms. From the PL quantum efficiency, slow growth of QDs, intensity trajectory analyses, and previous reports relating surface trap states and PL properties of QDs, we attribute the subsecond PL intensity fluctuations of single CdSe QDs and short-lived "on" and "off" states to a high-density distribution of homogeneous surface trap states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号