首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Alpha-tert-butoxystyrene [H2C=C(OBut)Ph] reacts with alpha-bromocarbonyl or alpha-bromosulfonyl compounds [R1R2C(Br)EWG; EWG =-C(O)X or -S(O2)X] to bring about replacement of the bromine atom by the phenacyl group and give R1R2C(EWG)CH2C(O)Ph. These reactions take place in refluxing benzene or cyclohexane with dilauroyl peroxide or azobis(isobutyronitrile) as initiator and proceed by a radical-chain mechanism that involves addition of the relatively electrophilic radical R1R2(EWG)C* to the styrene. This is followed by beta-scission of the derived alpha-tert-butoxybenzylic adduct radical to give But*, which then abstracts bromine from the organic halide to complete the chain. Alpha-1-adamantoxystyrene reacts similarly with R1R2C(Br)EWG, at higher temperature in refluxing octane using di-tert-amyl peroxide as initiator, and gives phenacylation products in generally higher yields than are obtained using alpha-tert-butoxystyrene. Simple iodoalkanes, which afford relatively nucleophilic alkyl radicals, can also be successfully phenacylated using alpha-1-adamantoxystyrene. O-Alkyl O-(tert-butyldimethylsilyl) ketene acetals H2C=C(OR)OTBS, in which R is a secondary or tertiary alkyl group, react in an analogous fashion with organic halides of the type R1R2C(Br)EWG to give the carboxymethylation products R1R2C(EWG)CH2CO2Me, after conversion of the first-formed silyl ester to the corresponding methyl ester. The silyl ketene acetals also undergo radical-chain reactions with electron-poor alkenes to bring about alkylation-carboxymethylation of the latter. For example, phenyl vinyl sulfone reacts with H2C=C(OBut)OTBS to afford ButCH2CH(SO2Ph)CH2CO2Me via an initial silyl ester. In a more complex chain reaction, involving rapid ring opening of the cyclopropyldimethylcarbinyl radical, the ketene acetal H2C=C(OCMe2C3H5-cyclo)OTBS reacts with two molecules of N-methyl- or N-phenyl-maleimide to bring about [3 + 2] annulation of one molecule of the maleimide, and then to link the bicyclic moiety thus formed to the second molecule of the maleimide via an alkylation-carboxymethylation reaction.  相似文献   

2.
The FeIII-TAML (tetra-amido macrocyclic ligand) activators 1 (Y = Cl) and 2 (Y = H2O), a (R = Me, X = H), b (Me, Cl), c (Me, MeO), d (Et, Cl), e (F, H), f (F, Cl), are five-coordinated in the solid state (X-ray crystallography) but are six-coordinated species in water with two H2O axial ligands. The first pKa's of aqueous ligands are in the range of 9.5-10.5. The acid-induced demetalation of 2 follows the equation kobs = k1*[H+] + k3*[H+]3. The rate constants k1* and k3* vary by 5 and 11 orders of magnitude depending on the nature of substituents R. The highest stabilization against the demetalation is achieved for R = F.  相似文献   

3.
A combined experimental and theoretical investigation at the DFT and MP2 levels on the boron-to-carbon 1,2-shift in "ate species", coming from the quaternization of boranes (A) and boronate (B), is reported. To discuss the different migratory aptitudes of various alkyl groups, we have examined the migration of primary (R = Me, Et), secondary (R = i-Pr), and tertiary (R = t-Bu) alkyl groups. The effect of the counterion Li(+) and of the solvent (polarized continuous model (PCM) method) has been considered. The following results are relevant: (a) in all cases, the reaction proceeds via a concerted-type mechanism which explains the retention of configuration at the migrating group and the inversion at the migration terminus experimentally observed. (b) The trend of the migration barriers along the direction primary --> secondary --> tertiary alkyl group observed in "ate" species A is reversed in boronate species B, in agreement with the experimental evidences. (c) A simple theoretical model is proposed where the barrier trend is the result of a delicate interplay between two opposite factors: (1) a "steric effect", which favors the most sterically demanding migrating groups, and (2) a "charge effect" associated with the partial carbanionic nature of the migrating carbon atom and which favors the less substituted migrating carbons.  相似文献   

4.
A structure-activity study was carried out for Ni catalyzed alkyl-alkyl Kumada-type cross coupling reactions. A series of new nickel(II) complexes including those with tridentate pincer bis(amino)amide ligands ((R)N(2)N) and those with bidentate mixed amino-amide ligands ((R)NN) were synthesized and structurally characterized. The coordination geometries of these complexes range from square planar, tetrahedral, to square pyramidal. The complexes had been examined as precatalysts for cross coupling of nonactivated alkyl halides, particularly secondary alkyl iodides, with alkyl Grignard reagents. Comparison was made to the results obtained with the previously reported Ni pincer complex [((Me)N(2)N)NiCl]. A transmetalation site in the precatalysts is necessary for the catalysis. The coordination geometries and spin-states of the precatalysts have a small or no influence. The work led to the discovery of several well-defined Ni catalysts that are significantly more active and efficient than the pincer complex [((Me)N(2)N)NiCl] for the coupling of secondary alkyl halides. The best two catalysts are [((H)NN)Ni(PPh(3))Cl] and [((H)NN)Ni(2,4-lutidine)Cl]. The improved activity and efficiency was attributed to the fact that phosphine and lutidine ligands in these complexes can dissociate from the Ni center during catalysis. The activation of alkyl halides was shown to proceed via a radical mechanism.  相似文献   

5.
The protonation of [Ni(SC(6)H(4)R-4)(triphos)](+) (triphos = PhP[CH(2)CH(2)PPh(2)](2); R = NO(2), Cl, H, Me, or MeO) by [lutH](+) (lut = 2,6-dimethylpyridine) to form [Ni(S(H)C(6)H(4)R-4)(triphos)](2+) is an equilibrium reaction in MeCN. Kinetic studies, using stopped-flow spectrophotometry, reveal that the reactions occur by a two-step mechanism. Initially, [lutH](+) rapidly binds to the complex (K(2)(R)) in an interaction which probably involves hydrogen-bonding of the acid to the sulfur. Subsequent intramolecular proton transfer from [lutH](+) to sulfur (k(3)(R)) is slow because of both electronic and steric factors. The X-ray crystal structures of [Ni(SC(6)H(4)R-4)(triphos)](+) (R = NO(2), H, Me, or MeO) show that all are best described as square-planar complexes, with the phenyl substituents of the triphos ligand presenting an appreciable barrier to the approach of the sterically demanding [lutH](+) to the sulfur. The kinetic characteristics of the intramolecular proton transfer from [lutH](+) to sulfur have been investigated. The rate of intramolecular proton transfer exhibits a nonlinear dependence on Hammett sigma(+), with both electron-releasing and electron-withdrawing 4-R-substituents on the coordinated thiolate facilitating the rate of proton transfer (NO(2) > Cl > H > Me < MeO). The rate constants for intramolecular proton transfer correlate well with the calculated electron density of the sulfur. The temperature dependence of the rate of the intramolecular proton transfer reactions shows that deltaH() is small but increases as the 4-R-substituent becomes more electron-withdrawing [deltaH = 4.1 (MeO), 6.9 (Me), 11.4 kcal mol(-)(1) (NO(2))], while DeltaS() becomes progressively less negative [deltaS = -50.1 (MeO), -41.2 (Me), -16.4 (NO(2)) cal K(-)(1) mol(-)(1)]. Studies with [lutD](+) show that the rate of intramolecular proton transfer varies with the 4-R-substituent [(k(3)(NO)2)(H)/(k(3)(NO)2)(D) = 0.39; (k(3)(Cl))(H)/(k(3)(Cl))(D) = 0.88; (k(3)(Me))(H)/(k(3)(Me))(D) = 1.3; (k(3)(MeO))(H)/(k(3)(MeO))(D) = 1.2].  相似文献   

6.
Persistent noncyclic phosphoranyl radicals have been prepared and observed by electron paramagnetic resonance (EPR) for the first time. They were obtained by UV-photolysis of a solution containing a bis(trialkylsilyl) peroxide (R = Me, Et) and a tris(trialkylsilyl) phosphite (R = Me, Et, iPr). EPR parameters (a(P) approximately 100 mT) are typical of phosphoranyl radicals exhibiting a trigonal-bipyramidal structure, with the odd electron in an equatorial site. Analysis of the pseudo-first-order decay shows that these phosphoranyl radicals decay by S(H)2 homolytic substitution on the bis(trialkylsilyl) peroxide and by loss of a trialkylsilyloxyl radical (alpha-scission reaction). Both the S(H)2 and alpha-scission reactions depend on the steric bulk of the alkyl groups, that is, the bulkier the alkyl group, the slower the S(H)2 and alpha-scission reactions.  相似文献   

7.
A kinetic study of the reversible deprotonation of methylnitroacetate (4H) by primary aliphatic amines, secondary alicyclic amines, hydroxide ion, and water in water at 25 degrees C and in 50% DMSO/50% water (v/v) at 20 degrees C is reported. Intrinsic rate constants, k0, determined by extrapolation or interpolation of Br?nsted plots have been determined. In comparison to proton transfers involving other nitroalkanes, the intrinsic rate constants for 4H are exceptionally high; for example, log k0 for the reaction of 4H with secondary alicyclic amines in water (1.22) is 1.81 log units higher than log k0 for nitromethane (-0.59), while in 50% DMSO/50% water, log k0 for 4H (2.44) is 1.71 log units higher than that for nitromethane (0.73). A general discussion of the factors affecting intrinsic rate constants of proton transfer from nitroalkanes is presented; it provides the context for an understanding as to why k0 is so high for the proton transfers from 4H. The correlation between intrinsic rate constants for the addition of nucleophiles to alkenes of the type R'R' 'C=CXY and the intrinsic rate constants of proton transfers from carbon acids of the type H2CXY is also discussed as a general proposition as well as with specific reference to the Ph(SMe)C=C(NO2)CO2Me/H2C(NO2)CO2Me pair.  相似文献   

8.
A one-pot reaction between di-n-butyltin oxide and diethyl/di-n-propyl sulfite in the presence of an equimolar amount of alkyl iodide proceeds via sulfur-centered Arbuzov rearrangement to afford the corresponding di-n-butyltin (alkoxy)alkanesulfonates n-Bu2Sn(OR')OS(O)2R [R = R' = Et (1), n-Pr (2); R = Me, R' = Et (3), n-Pr (4)]. The compounds 1 and 3 react with methylphosphonic acid under mild conditions to give [n-Bu2Sn(OS(O)2R)OP(O)(OH)Me]n [R = Et (5), Me (6), respectively].  相似文献   

9.
[Ru(VI)(TMP)(NSO2R)2] (SO2R = Ms, Ts, Bs, Cs, Ns; R = p-C6H4OMe, p-C6H4Me, C6H5, p-C6H4Cl, p-C6H4NO2, respectively) and [Ru(VI)(Por)(NTs)2] (Por = 2,6-Cl2TPP, F20-TPP) were prepared by the reactions of [Ru(II)(Por)(CO)] with PhI=NSO2R in CH2Cl2. These complexes exhibit reversible Ru(VI/V) couple with E(1/2) = -0.41 to -0.12 V vs Cp2Fe(+/0) and undergo imido transfer reactions with styrenes, norbornene, cis-cyclooctene, indene, ethylbenzenes, cumene, 9,10-dihydroanthracene, xanthene, cyclohexene, toluene, and tetrahydrofuran to afford aziridines or amides in up to 85% yields. The second-order rate constants (k2) of the aziridination/amidation reactions at 298 K were determined to be (2.6 +/- 0.1) x 10(-5) to 14.4 +/- 0.6 dm3 mol(-1) s(-1), which generally increase with increasing Ru(VI/V) reduction potential of the imido complexes and decreasing C-H bond dissociation energy (BDE) of the hydrocarbons. A linear correlation was observed between log k' (k' is the k2 value divided by the number of reactive hydrogens) and BDE and between log k2 and E(1/2)(Ru(VI/V)); the linearity in the former case supports a H-atom abstraction mechanism. The amidation by [Ru(VI)(TMP)(NNs)2] reverses the thermodynamic reactivity order cumene > ethylbenzene/toluene, with k'(tertiary C-H)/k'(secondary C-H) = 0.2 and k'(tertiary C-H)/k'(primary C-H) = 0.8.  相似文献   

10.
Summary A study was made of the condensation of benzaldehyde and acetaldehyde acetals with alkyl 2-bromovinyl ethers, as a result of which bromo ethoxy acetals of general formula RCH(OC2H5)CHBrCH(OR)2 (R=C6H5 and CH3) were formed.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 282–285, February, 1965  相似文献   

11.
Cyclic ketene N,X‐acetals 1 are electron‐rich dipolarophiles that undergo 1,3‐dipolar cycloaddition reactions with organic azides 2 ranging from alkyl to strongly electron‐deficient azides, e.g., picryl azide ( 2L ; R1=2,4,6‐(NO2)3C6H2) and sulfonyl azides 2M – O (R1=XSO2; cf. Scheme 1). Reactions of the latter with the most‐nucleophilic ketene N,N‐acetals 1A provided the first examples for two‐step HOMO(dipolarophile)–LUMO(1,3‐dipole)‐controlled 1,3‐dipolar cycloadditions via intermediate zwitterions 3 . To set the stage for an exploration of the frontier between concerted and two‐step 1,3‐dipolar cycloadditions of this type, we first describe the scope and limitations of concerted cycloadditions of 2 to 1 and delineate a number of zwitterions 3 . Alkyl azides 2A – C add exclusively to ketene N,N‐acetals that are derived from 1H‐tetrazole (see 1A ) and 1H‐imidazole (see 1B , C ), while almost all aryl azides yield cycloadducts 4 with the ketene N,X‐acetals (X=NR, O, S) employed, except for the case of extreme steric hindrance of the 1,3‐dipole (see 2E ; R1=2,4,6‐(tBu)3C6H2). The most electron‐deficient paradigm, 2L , affords zwitterions 16D , E in the reactions with 1A , while ketene N,O‐ and N,S‐acetals furnish products of unstable intermediate cycloadducts. By tuning the electronic and steric demands of aryl azides to those of ketene N,N‐acetals 1A , we discovered new borderlines between concerted and two‐step 1,3‐dipolar cycloadditions that involve similar pairs of dipoles and dipolarophiles: 4‐Nitrophenyl azide ( 2G ) and the 2,2‐dimethylpropylidene dipolarophile 1A (R, R=H, tBu) gave a cycloadduct 13 H , while 2‐nitrophenyl azide ( 2 H ) and the same dipolarophile afforded a zwitterion 16A . Isopropylidene dipolarophile 1A (R=Me) reacted with both 2G and 2 H to afford cycloadducts 13G , J ) but furnished a zwitterion 16B with 2,4‐dinitrophenyl azide ( 2I) . Likewise, 1A (R=Me) reacted with the isomeric encumbered nitrophenyl azides 2J and 2K to yield a cycloadduct 13L and a zwitterion 16C , respectively. These examples suggest that, in principle, a host of such borderlines exist which can be crossed by means of small structural variations of the reactants. Eventually, we use 15N‐NMR spectroscopy for the first time to characterize spirocyclic cycloadducts 10 – 14 and 17 (Table 6), and zwitterions 16 (Table 7).  相似文献   

12.
Copper(I)-dioxygen adducts are important in biological and industrial processes. For the first time we explore the relationship between ligand electronics, CuI-O2 adduct formation and exogenous substrate reactivity. The copper(I) complexes [CuI(R-MePY2)]+ (1R, where R = Cl, H, MeO, Me2N) were prepared; where R-MePY2 are 4-pyridyl substituted bis[2-(2-pyridyl)ethyl]methylamine chelates. Both the redox potential of 1R (ranging from E1/2 = -270 mV for 1Cl to -440 mV for 1MeN vs FeCp2/FeCp2+) and nuCO of the CO adducts of 1R (ranging from 2093 cm-1 for 1Cl-CO to 2075 cm-1 for 1Me2N-CO) display modest but expected systematic shifts. Dioxygen readily reacts with 1H, 1MeO, and 1Me2N, forming the side-on peroxo-CuII2 complexes [{CuII(R-MePY2)}2(O2)]2+ (2R, also containing some bis-mu-oxo-CuIII2 isomer), but there is no reaction with 1Cl. Stopped-flow studies in dichloromethane show that the formation of 2Me2N from dioxygen and 1Me2N proceeds with a k = 8.2(6) x 104 M-2 s-1 (183 K, DeltaH = -20.3(6) kJ mol-1, DeltaS = -219(3) J mol-1 K-1). Solutions of 2R readily oxidize exogenous substrates (9,10-dihydroanthracene --> anthracene, tetrahydrofuran (THF) --> 2-hydroxytetrahydrofuran (THF-OH), N,N-dimethylaniline --> N-methylaniline and formaldehyde, benzyl alcohol --> benzaldehyde, benzhydrol --> benzophenone, and methanol --> formaldehyde), forming the bis-mu-hydroxo-CuII2 complexes [{CuII(R-MePY2)(OH)}2]2+ (3R). Product yields increase as the R-group is made more electron-donating, and in some cases are quantitative with 2Me2N. Pseudo-first-order rate constants for THF and methanol oxidation reactions demonstrate a remarkable R-group dependence, again favoring the strongest ligand donor (i.e., R = Me2N). For THF oxidation to THF-OH a nearly 1500-fold increase in reaction rate is observed (kobs = 2(1) x 10-5 s-1 for 2H to 3(1) x 10-2 s-1 for 2Me2N), while methanol oxidation to formaldehyde exhibits an approximately 2000-fold increase (kobs = 5(1) x 10-5 s-1 for 2H to 1(1) x 10-1 s-1 for 2Me2N).  相似文献   

13.
Alkoxyamines and persistent nitroxyl radicals are important regulators of living radical polymerizations. Because polymerization times decrease with the increasing rate of the homolytic C-O bond cleavage between the polymer chain and the nitroxide moiety, the factors influencing the homolysis rate are of considerable interest. Here, we present an analysis of the cleavage rate constants for 28 alkoxyamines carrying the styryl (PhEt) group as leaving alkyl radical in terms of polar inductive/field (sigmaL) and steric (Es) effects of the nitroxide substituents, using the Taft-Ingold equation, i.e., log(k/k0) = rhoLsigmaL + deltaEs. The rate constants are shown to increase with the increasing electron-donating capacities, the steric demand, and the intramolecular (hydrogen) bonding capabilities of the substituents. A good correlation, (R2 = 0.95, 23 data) log kd = -3.07sigmaL - 0.88Es - 5.88, is obtained, which should facilitate the design of new nitroxyl radicals and alkoxyamine regulators.  相似文献   

14.
Methods for replacing the carbonyl oxygen by two new substituents (C=O→CR(1)R(2)) are discussed in this Minireview, whereby R may be H, NR(2), alkyl, allyl, benzyl, vinyl, alkynyl, aryl, heteroaryl, or acyl groups. The most frequently used starting materials for geminal disubstitution with the formation of two C-C bonds (R(1),R(2)≠H, NR(2)) are amides and thioamides, which react with organometallic nucleophiles R-M (M=Li, MgX, CeX(2), TiX(3), ZrX(3)) to give tertiary sec- and tert-alkylamines. Quaternary centers can be built directly from ketones by treatment with Me(3)Al, MeTiCl(3), or Me(2)TiCl(2) (R(1)R(2)C=O→R(1)R(2)CMe(2)). The scope and limitations of the various methods and mechanistic models are briefly discussed. The remarkable variety and diversity of structures thus accessible are demonstrated by numerous examples.  相似文献   

15.
袁承业  丁贻祥 《化学学报》1987,45(2):180-184
本文报道α-砜基碳阴离子和磷酰氯的反应,提供了合成α-砜基膦酸酯和α,β-不饱和砜的新方法,此方法具有原料易得、反应步骤少、得率较高等优点.还讨论了α-芳砜基膦酸酯的质谱.  相似文献   

16.
The substitution kinetics of Me2PhP in cis-Pt(SiMePh2)2(PMe2Ph)2 (1) by the chelating ligand bis(diphenylphosphino)ethane has been followed at 25.0 degrees C in dichloromethane by stopped-flow spectrophotometry. Addition of the leaving ligand causes mass-law retardation compatible with a dissociative process via a three-coordinate transition state or intermediate. Exchange of Me2PhP in 1 has been studied by variable-temperature magnetization transfer 1H NMR in toluene-d8, giving kex326 = 1.76 +/- 0.12 s-1, delta H++ = 117.8 +/- 2.1 kJ mol-1, and delta S++ = 120 +/- 7 J K-1 mol-1. An exchange rate constant independent of the concentrations of free phosphine, a strongly positive delta S++, and nearly equal exchange and ligand dissociation rate constants also support a dissociative process. Density functional theory (DFT) calculations for a dissociative process give an estimate for the Pt-P bond energy of 98 kJ mol-1 for R = R' = Me, which is in reasonable agreement with the experimental activation energy given the differences between the substituents used in the calculation and those employed experimentally. DFT calculations on cis-Pt(PR3)2(SiR'3)2 (R = H, CH3; R' = H, CH3) are consistent with the experimental molecular structure and show that methyl substituents on the Si donors are sufficient to induce the observed tetrahedral twist. The optimized Si-Pt-Si angle in cis-Pt(SiH3)2(PH3)2 is not significantly altered by changing the P-Pt-P angle from its equilibrium value of 104 degrees to 80 degrees or 120 degrees. The origin of the tetrahedral twist is therefore not steric but electronic. The Si-Pt-Si angle is consistently less than 90 degrees, but the Si-Si distance is still too long to support an incipient reductive elimination reaction with its attendant Si-Si bonding interaction. Instead, it appears that four tertiary ligands introduce a steric strain which can be decreased by a twist of two of the ligands out of the plane; this twist is only possible when two strong sigma donors are cis to each other, causing a change in the metal's hybridization.  相似文献   

17.
A. Pons  J.P. Chapat 《Tetrahedron》1980,36(15):2219-2224
The equilibration of the cis and trans isomers of four epimeric pairs of 3,4-dialkyl cyclohexanones (alkyl = Me, Et) have been studied quantitatively at different temperatures. The thermodynamic constants ΔH and Δs exhibit considerable variations depending on the nature (Me or Et) of the substituents. These quantities were also calculated from statistical considerations. Theoretical and experimental values are in agreement. The origin of the observed variation an increase of the diaxial conformer proportion due to enhanced steric hindrance in other possible conformers when a methyl group is substituted by an ethyl group. This was confirmed experimentally by an NMR study of the trans-3,4-dialkyl cyclohexanone oximes.  相似文献   

18.
The 3-cyano-N-methylquinolinium perchlorate (3-CN-NMQ(+)ClO4(-))-photosensitized oxidation of phenyl alkyl sulfoxides (PhSOCR1R2R3, 1, R1 = R2 = H, R3 = Ph; 2, R1 = H, R2 = Me, R3 = Ph; 3, R1 = R2 = Ph, R3 = H; 4, R1 = R2 = Me, R3 = Ph; 5, R1 = R2 = R3 = Me) has been investigated by steady-state irradiation and nanosecond laser flash photolysis (LFP) under nitrogen in MeCN. Steady-state photolysis showed the formation of products deriving from the heterolytic C-S bond cleavage in the sulfoxide radical cations (alcohols, R1R2R3COH, and acetamides, R1R2R3CNHCOCH3) accompanied by sulfur-containing products (phenyl benzenethiosulfinate, diphenyl disulfide, and phenyl benzenethiosulfonate). By laser irradiation, the formation of 3-CN-NMQ(*) (lambda(max) = 390 nm) and sulfoxide radical cations 1(*+) , 2(*+), and 5(*+) (lambda(max) = 550 nm) was observed within the laser pulse. The radical cations decayed by first-order kinetics with a process attributable to the heterolytic C-S bond cleavage leading to the sulfinyl radical and an alkyl carbocation. The radical cations 3(*+) and 4(*+) fragment too rapidly, decaying within the laser pulse. The absorption band of the cation Ph2CH(+) (lambda(max) = 440 nm) was observed with 3 while the absorption bands of 3-CN-NMQ(*) and PhSO(*) (lambda(max) = 460 nm) were observed just after the laser pulse in the LFP experiment with 4. No competitive beta-C-H bond cleavage has been observed in the radical cations from 1-3. The C-S bond cleavage rates were measured for 1(*+), 2(*+), and 5(*+). For 3(*+) and 4(*+), only a lower limit (ca. >3 x 10(7) s(-1)) could be given. Quantum yields (Phi) and fragmentation first-order rate constants (k) appear to depend on the structure of the alkyl group and on the bond dissociation free energy (BDFE) of the C-S bond of the radical cations determined by a thermochemical cycle using the C-S BDEs for the neutral sulfoxides 1-5 obtained by DFT calculations. Namely, Phi and k increase as the C-S BDFE becomes more negative, that is in the order 1 < 5 < 2 < 3, 4, which is also the stability order of the alkyl carbocations formed in the cleavage. An estimate of the difference in the C-S bond cleavage rate between sulfoxide and sulfide radical cations was possible by comparing the fragmentation rate of 5(*+) (1.4 x 10(6) s(-1)) with the upper limit (10(4) s(-1)) given for tert-butyl phenyl sulfide radical cation (Baciocchi, E.; Del Giacco, T.; Gerini, M. F.; Lanzalunga, O. Org. Lett. 2006, 8, 641-644). It turns out that sulfoxide radical cations undergo C-S bond breaking at a rate at least 2 orders of magnitude faster than that of corresponding sulfide radical cations.  相似文献   

19.
Synthesis of Organometal Amines of the Main Group IV Elements A method to prepare the primary, secondary, and tertiary organometal amines of the main group IV has been developed in order to investigate the vibrational properties of these compounds. The systematical changing of the steric hindrance within the trialkylgermyl-, -stannyl- and plumbyl halides, which has been subdued to a reaction in liquid ammonia in the presence of alkali mide, yields the formerly unknown primary amines R3MeNH2 Me = Ge, R = i-C3H7; Me = Sn, Pb, R = t-C4H9. Furthermore a number of the secondary and tertiary organometal amines has been prepared.  相似文献   

20.
This article reports a convenient and general method for the regioselective synthesis of a new series of 2‐alkyl(aryl)‐8‐methyl‐4‐trifluoromethyl‐7‐aminoquinolines in 86–93% yields, from cycloaromatization reactions of N‐(oxotrifluoroalkenyl)‐2,6‐diaminotoluenes in a strongly acidic medium polyphosphoric acid and absence of solvent. The enaminoketone intermediates were easily isolated from the reaction of 4‐alkoxy‐4‐alkyl(aryl)‐1,1,1‐trifluoroalk‐3‐en‐2‐ones [CF3C(O)CH═C(R)OR1, where R = H, Me, Ph, 4‐FPh, 4‐BrPh, 4‐MePh, and R1 = Me, Et] with 2,6‐diaminotoluene (2,6‐DAT) in methanol under mild conditions, in 46–70% yields. Another synthetic route also allowed the regioselective synthesis of 2‐aryl(heteroaryl)‐4‐methyl‐4‐trifluoromethyl‐7‐aminoquinolines from direct cyclocondensation reactions of 4‐alkoxy‐4‐aryl(heteroaryl)‐1,1,1‐trifluoroalk‐3‐en‐2‐ones with 2,6‐diaminotoluene in methanol under mild conditions, in 21–36% yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号