首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we consider the symmetric q-Dirac operator. We describe dissipative, accumulative, self-adjoint and the other extensions of such operators with general boundary conditions. We construct a self-adjoint dilation of dissipative operator. Hence, we determine the scattering matrix of dilation. Later, we construct a functional model of this operator and define its characteristic function. Finally, we prove that all root vectors of this operator are complete.  相似文献   

2.
We consider the dissipative dynamics of electron transfer in the photosynthetic reaction center of purple bacteria and propose a model where the transition between electron states arises only due to the interaction between a chromophore system and the protein environment and is not accompanied by the motion of nuclei of the reaction subsystem. We establish applicability conditions for the Markov approximation in the framework of this model and show that these conditions are not necessarily satisfied in the protein medium. We represent the spectral function of the “system+heat bath” interaction in the form of one or several Gaussian functions to study specific characteristics of non-Markov dynamics of the final state population, the presence of an induction period and vibrations. The consistency of the computational results obtained for non-Markov dynamics with experimental data confirms the correctness of the proposed approach.  相似文献   

3.
In this paper we consider the nonselfadjoint (dissipative) Schr(o)dinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator,and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schr(o)dinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schr(o)dinger boundary value problem are given.  相似文献   

4.
In this paper we consider the nonselfadjoint (dissipative) Schrödinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator, and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schrödinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schrödinger boundary value problem are given.  相似文献   

5.
We consider the problem of the dissipative dynamics of a harmonic oscillator linearly coupled to a heat bath. We demonstrate that in addition to the mean energy, there exists an infinite series of quantities exponentially decreasing in time that are means of polynomials of the system Hamiltonian. We obtain the spectrum of the corresponding relaxation times. We propose a method for representing the time characteristics of the system in terms of operators corresponding to the exponentially damped observables. We obtain a recurrence relation for these operators.  相似文献   

6.
In this paper we consider the nonselfadjoint (dissipative) Schrodinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator, and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schrodinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schrodinger boundary value problem are given.  相似文献   

7.
8.
9.
In this paper, we study a nonself-adjoint singular 1D Hamiltonian (or Dirac type) system in the limit-circle case, with a spectral parameter in the boundary condition. Our approach depends on the use of the maximal dissipative operator whose spectral analysis is adequate for the boundary value problem. We construct a self-adjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations so that we can determine the scattering matrix of dilation. Moreover, we construct a functional model of the dissipative operator and specify its characteristic function using the solutions of the corresponding Hamiltonian system. Based on the results obtained by the theory of the characteristic function, we prove theorems on completeness of the system of eigenvectors and associated vectors of the dissipative operator and Hamiltonian system.  相似文献   

10.
In the Hilbert space , we consider nonselfadjoint singular Sturm-Liouville boundary value problem (with two singular end points a and b) in limit-circle cases at a and b, and with a spectral parameter in the boundary condition. The approach is based on the use of the maximal dissipative operator, and the spectral analysis of this operator is adequate for boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We also construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Sturm-Liouville equation. On the basis of the results obtained regarding the theory of the characteristic function, we prove theorems on completeness of the system of eigenvectors and associated vectors of the maximal dissipative operator and Sturm-Liouville boundary value problem.  相似文献   

11.
In this paper, we consider the one‐dimensional Schrödinger operator on bounded time scales. We construct a space of boundary values of the minimal operator and describe all maximal dissipative, maximal accretive, self‐adjoint, and other extensions of the dissipative Schrödinger operators in terms of boundary conditions. In particular, using Lidskii's theorem, we prove a theorem on completeness of the system of root vectors of the dissipative Schrödinger operators on bounded time scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we construct a space of boundary values for minimal symmetric 1D Hamiltonian operator with defect index (1,1) (in limit‐point case at a(b) and limit‐circle case at b(a)) acting in the Hilbert space In terms of boundary conditions at a and b, all maximal dissipative, accumulative, and self‐adjoint extensions of the symmetric operator are given. Two classes of dissipative operators are studied. They are called “dissipative at a” and “dissipative at b.” For 2 cases, a self‐adjoint dilation of dissipative operator and its incoming and outgoing spectral representations are constructed. These constructions allow us to establish the scattering matrix of dilation and a functional model of the dissipative operator. Further, we define the characteristic function of the dissipative operators in terms of the Weyl‐Titchmarsh function of the corresponding self‐adjoint operator. Finally, we prove theorems on completeness of the system of root vectors of the dissipative operators.  相似文献   

13.
We consider the problem of the dynamics of a Gaussian wave packet in a one-dimensional harmonic ocsillator interacting with a bath. This problem arises in many chemical and biochemical applications related to the dynamics of chemical reactions. We take the bath-oscillator interaction into account in the framework of the Redfield theory. We obtain closed expressions for Redfield-tensor elements, which allows finding the explicit time dependence of the average vibrational energy. We show that the energy loss rate is temperature-independent, is the same for all wave packets, and depends only on the spectral function of the bath. We determine the degree of coherence of the vibrational motion as the trace of the density-matrix projection on a coherently moving wave packet. We find an explicit expression for the initial coherence loss rate, which depends on the wave packet width and is directly proportional to the intensity of the interaction with the bath. The minimum coherence loss rate is observed for a “coherent” Gaussian wave packet whose width corresponds to the oscillator frequency. We calculate the limiting value of the degree of coherence for large times and show that it is independent of the structural characteristics of the bath and depends only on the parameters of the wave packet and on the temperature. It is possible that residual coherence can be preserved at low temperatures. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 153, No. 1, pp. 130–144, October, 2007.  相似文献   

14.
We consider linear fractional differential operator equations involving the Caputo derivative. The goal of this paper is to establish conditions for the unique solvability of the inverse Cauchy problem for these equations. We use properties of the Mittag-Leffler function and the calculus of sectorial operators in a Banach space. For equations with operators in a general form we obtain sufficient conditions for the unique solvability, and for equations with densely defined sectorial operators we obtain necessary and sufficient unique solvability conditions.  相似文献   

15.
We develop spectral and asymptotic analysis for a class of nonselfadjoint operators which are the dynamics generators for the systems governed by the equations of the spatially nonhomogeneous Timoshenko beam model with a 2–parameter family of dissipative boundary conditions. Our results split into two groups. We prove asymptotic formulas for the spectra of the aforementioned operators (the spectrum of each operator consists of two branches of discrete complex eigenvalues and each branch has only two points of accumulation: +∞ and —∞), and for their generalized eigenvectors. Our second main result is the fact that these operators are Riesz spectral. To obtain this result, we prove that the systems of generalized eigenvectors form Riesz bases in the corresponding energy spaces. We also obtain the asymptotics of the spectra and the eigenfunctions for the nonselfadjoint polynomial operator pencils associated with these operators. The pencil asymptotics are essential for the proofs of the spectral results for the aforementioned dynamics generators.  相似文献   

16.
The electromagnetic problem by the finite bicone, which is formed with the perfectly conducting semi-infinite cone and the finite cone with truncated vertex, is studied. Bicone is excited axial-symmetrically by the ring magnetic source. The diffracted field is represented through the series of the transversal magnetic (TM) modes; the lower mode among them is called the transversal electromagnetic wave (TEM). On the basis of this representation and using the mode matching technique, we derive the series equations to determine the unknown complex modes magnitudes. In view of the electric field singularities at the conical edges, these equations are represented in the form of the limiting transition from the finite sums to the series. We derive the rule of this transition, as well as the procedure for reducing them to the infinite system of linear algebraic equations (ISLAE) of the first kind. We study asymptotic properties of the matrix elements and find that the main part of their static limit and their behavior for large indexes form the matrix operator of the convolution type; the corresponding inverted operator in the analytical form is obtained. Both these operators, which we call the regularization operators, are used for the transition from the ISLAE of the first kind to the ISLAE of the second kind. The ISLAE thus obtained allow for the solution of any geometrical parameters and frequency with the given accuracy. The asymptotic properties of their solutions are analyzed, and the numerical examinations of the far field patterns are provided.  相似文献   

17.
We solve the problem of integrating operator equations for the dynamics of nonautonomous quantum systems by using time-dependent canonical transformations. The studied operator equations essentially reproduce the classical integrability conditions at the quantum level in the basic cases of one-dimensional nonautonomous dynamical systems. We seek solutions in the form of operator series in the Bender–Dunne basis of pseudodifferential operators. Together with this problem, we consider quantum canonical transformations. The minimal solution of the operator equation in the representation of the basis at a fixed time corresponds to the lowest-order contribution of the solution obtained as a result of applying a canonical linear transformation to the basis elements.  相似文献   

18.
The connection between the classical moment problem and the spectral theory of second order difference operators (or Jacobi matrices) is a thoroughly studied topic. Here we examine a similar connection in the case of the second order operator replaced by an operator generated by an infinite band matrix with operator elements. For such operators, we obtain an analog of the Stone theorem and consider the inverse spectral problem which amounts to restoring the operator from the moment sequence of its Weyl matrix. We establish the solvability criterion for such problems, find the conditions ensuring that the elements of the moment sequence admit an integral representation with respect to an operator valued measure and discuss an algorithm for the recovery of the operator. We also indicate a connection between the inverse problem method and the Hermite-Padé approximations.  相似文献   

19.
We interpret the Central Limit Theorem as a fixed point theorem for a certain operator, and consider the problem of linearizing this operator. In classical as well as in free probability theory [VDN92], we consider two methods giving such a linearization, and interpret the result as a weak form of the CLT. In the classical case the analysis involves dilation operators; in the free case more general composition operators appear. Received: 3 December 1997  相似文献   

20.
We study the Banach algebra generated by a finite number of Bergman polykernel operators with continuous coefficients that is extended by operators of weighted shift that form a finite group. By using an isometric transformation, we represent the operators of the algebra in the form of a matrix operator formed by a finite number of mutually complementary projectors whose coefficients are Toeplitz matrix functions of finite order. Using properties of Bergman polykernel operators, we obtain an efficient criterion for the operators of the algebra considered to be Fredholm operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号