首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let A k be an integral operator defined by
$ A_k f\left( x \right) = \frac{1} {{K\left( x \right)}}\int_{\Omega _2 } {k\left( {x,y} \right)f\left( y \right)d\mu _2 \left( y \right),} $ A_k f\left( x \right) = \frac{1} {{K\left( x \right)}}\int_{\Omega _2 } {k\left( {x,y} \right)f\left( y \right)d\mu _2 \left( y \right),}   相似文献   

2.
This paper is concerned with a nonlocal hyperbolic system as follows utt = △u + (∫Ωvdx )^p for x∈R^N,t〉0 ,utt = △u + (∫Ωvdx )^q for x∈R^N,t〉0 ,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N, where 1≤ N ≤3, p ≥1, q ≥ 1 and pq 〉 1. Here the initial values are compactly supported and Ω belong to R^N is a bounded open region. The blow-up curve, blow-up rate and profile of the solution are discussed.  相似文献   

3.
Abstract  Let Ω be the unit ball centered at the origin in . We study the following problem
By a constructive argument, we prove that for any k = 1, 2, • • •, if ε is small enough, then the above problem has positive a solution uε concentrating at k distinct points which tending to the boundary of Ω as ε goes to 0+.  相似文献   

4.
§1 IntroductionAnvarovandLarinov[1]introducedthefollowingprey-predatorsystem:x(t)=x(t)[α-γy(t)-γ∫∞0K1(s)y(t-s)ds-∫∞0∫∞0R1(s,θ)y(t-s)y(t-θ)dθds],y(t)=y(t)[-β μx(t) μ∫∞0K2(s)x(t-s)ds ∫∞0∫∞0R2(s,θ)x(t-θ)x(t-s)dθds],(1)whereα,γ,βandμarepositiveconstants,Ki∈C([0,∞),(0,∞))andRi∈C([0,∞)×[0,∞),(0,∞)),i=1,2.Fortheecologicalsenseofsystem(1),wereferto[1,2]andrefer-encescitedtherein.Sincerealisticmodelsrequiretheinclusionoftheeffectofchangingen-vironment,itmot…  相似文献   

5.
In this paper, we consider the functional differential equation with impulsive perturbations
$ \left\{ {{*{20}{c}} {{x^{\prime}}(t) = f\left( {t,{x_t}} \right),} \hfill & {t \geq {t_0},\quad t \ne {t_k},\quad x \in {\mathbb{R}^n},} \hfill \\ {\Delta x(t) = {I_k}\left( {t,x\left( {{t^{-} }} \right)} \right),} \hfill & {t = {t_k},\quad k \in {\mathbb{Z}^{+} }.} \hfill \\ } \right. $ \left\{ {\begin{array}{*{20}{c}} {{x^{\prime}}(t) = f\left( {t,{x_t}} \right),} \hfill & {t \geq {t_0},\quad t \ne {t_k},\quad x \in {\mathbb{R}^n},} \hfill \\ {\Delta x(t) = {I_k}\left( {t,x\left( {{t^{-} }} \right)} \right),} \hfill & {t = {t_k},\quad k \in {\mathbb{Z}^{+} }.} \hfill \\ \end{array} } \right.  相似文献   

6.
Let Ω⊂R n (n≥2) be a bounded open set;Q T =Ω×[0,T],S T =δΩ×[0,T],S 1,S 2 be the partial boundaries of Ω andS 1S 2=δΩ,S 1S 2=Φ. We denote Γ1.T =S 1×[0,T], Γ2.T =S 2×[0,T], and consider the problem
  相似文献   

7.
8.
Summary  We prove existence results for the initial-boundary value problem for parabolic equations of the type
where ω is a bounded open subset ofR N and T>0, A is a pseudomonotone operator of Leray-Lions type defined in L2(), T; H 0 1 (ω), u0 is in L1 (ω) and g(x, t, s) is only assumed to be a Carathéodory function satisfying a sign condition. The result is achieved by proving the strong convergence in L2 (0, T; H 0 1 (ω)) of trucations of solutions of approximating problems with L1 converging data. To underline the importance of this tool, we show how it can be used for getting other existence theorems, dealing in particular with the following class of Cauchy-Dirichlet problems:
where ΦεC0 (R, R N) and the data f and u0 are still taken in L1(Q) and L1(ω) respectively. Entrata in Redazione il 2 aprile 1998.  相似文献   

9.
In this article, we study the homogenization of the family of parabolic equations over periodically perforated domains . Here, Ωɛ = ΩS ε is a periodically perforated domain andd ε is a sequence of positive numbers which goes to zero. We obtain the homogenized equation. The homogenization of the equations on a fixed domain and also the case of perforated domain with Neumann boundary condition was studied by the authors. The homogenization for a fixed domain and has been done by Jian. We also obtain certain corrector results to improve the weak convergence.  相似文献   

10.
11.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

12.
In this article, we study the homogenization of the family of parabolic equations over periodically perforated domains
. Here, ΩɛS ɛ is a periodically perforated domain. We obtain the homogenized equation and corrector results. The homogenization of the equations on a fixed domain was studied by the authors [15]. The homogenization for a fixed domain and has been done by Jian [11].  相似文献   

13.
LetL be a self-adjoint linear operator andN be the gradient of a functional ϕ, which is almost quadratic. We first give a theorem on the surjectivity of the operatorL+N, then apply the result to semilinear elliptic systems:
  相似文献   

14.
In this paper, we study and discuss the existence of multiple solutions of a class of non-linear elliptic equations with Neumann boundary condition, and obtain at least seven non-trivial solutions in which two are positive, two are negative and three are sign-changing. The study of problem (1.1):{-△u αu=f(u),x∈Ω, x∈Ω,δu/δr=0,x∈δΩ,is based on the variational methods and critical point theory. We form our conclusion by using the sub-sup solution method, Mountain Pass Theorem in order intervals, Leray-Schauder degree theory and the invariance of decreasing flow.  相似文献   

15.
Some integral inequalities for the polar derivative of a polynomial   总被引:1,自引:0,他引:1  
If P(z) is a polynomial of degree n which does not vanish in |z| 1,then it is recently proved by Rather [Jour.Ineq.Pure and Appl.Math.,9 (2008),Issue 4,Art.103] that for every γ 0 and every real or complex number α with |α|≥ 1,{∫02π |D α P(e iθ)| γ dθ}1/γ≤ n(|α| + 1)C γ{∫02π|P(eiθ)| γ dθ}1/γ,C γ ={1/2π∫0 2π|1+eiβ|γdβ}-1/γ,where D α P(z) denotes the polar derivative of P(z) with respect to α.In this paper we prove a result which not only provides a refinement of the above inequality but also gives a result of Aziz and Dawood [J.Approx.Theory,54 (1988),306-313] as a special case.  相似文献   

16.
Résumé  Dans un célèbre papier ([3]), B. GIDAS et J.SPRUCK ont utilisé-sous des hypothèses adéquates- la technique du “blow up” pour montrer que les solutionsuC 0C 1 (Ω) du problème admettent une estimation a priori dansC 0 . Dans ce travail, on montre que, si les solutionsu sont juste supposéesC 0 , une telle estimation a priori n’existe plus. In a famous paper ([3]), B. GIDAS and J. SPRUCK used a “blow-up” argument to show that, under appropriate assumptions, all the solutionsuC 0C 1 (Ω) of the problem admit an a priori estimate inC 0 . In this work, we show that, if one supposes the solutions are only inC 0 , such an a priori estimate does not hold.  相似文献   

17.
Let Ω be an open, bounded domain in \mathbbRn  (n ? \mathbbN){\mathbb{R}^n\;(n \in \mathbb{N})} with smooth boundary ∂Ω. Let p, q, r, d 1, τ be positive real numbers and s be a non-negative number which satisfies 0 < \fracp-1r < \fracqs+1{0 < \frac{p-1}{r} < \frac{q}{s+1}}. We consider the shadow system of the well-known Gierer–Meinhardt system:
$ \left \{ {l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \right. $ \left \{ \begin{array}{l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \end{array} \right.  相似文献   

18.
In this paper, I propose some problems, of topological nature, on the energy functional associated to the Dirichlet problem $$\left\{ \begin{gathered} - \Delta {\kern 1pt} {\kern 1pt} u = f\left( {x,u} \right){\text{in}}\Omega \hfill \\ u_{\left| {\wp \Omega } \right.} = 0 \hfill \\ \end{gathered} \right.$$ Positive answers to these problems would produce innovative multiplicity results on problem (Pf).  相似文献   

19.
In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems where –p is the p-Laplace operator, p > 1 and is a C 1,-domain in . We prove an analogue of [7, 16] for the eigenvalue problem with and obtain a non-existence result of positive solutions for the general systems.  相似文献   

20.
We show that under suitable conditions $$\begin{gathered} E_x f\left\{ {a + \int_0^t \beta \left[ {b + \int_0^s {\alpha \left( {X_r } \right)dr, c + s, X_s } } \right]ds, b + \int_0^t {\alpha \left( {X_s } \right)ds, c + t, X_t } } \right\} \hfill \\ = e^{tG} f\left[ {a, b, c, x} \right] \hfill \\ \end{gathered} $$ whereX t is a Brownian motion andG is the generator of a (C 0) contraction semigroupe tG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号