首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A New Superlinearly Convergent SQP Algorithm for Nonlinear Minimax Problems   总被引:2,自引:0,他引:2  
In this paper, the nonlinear minimax problems are discussed. By means of the Sequential Quadratic Programming (SQP), a new descent algorithm for solving the problems is presented. At each iteration of the proposed algorithm, a main search direction is obtained by solving a Quadratic Programming (QP) which always has a solution. In order to avoid the Maratos effect, a correction direction is obtained by updating the main direction with a simple explicit formula. Under mild conditions without the strict complementarity, the global and superlinear convergence of the algorithm can be obtained. Finally, some numerical experiments are reported.  相似文献   

2.
In this paper, we analyze the global and local convergence properties of two predictor-corrector smoothing methods, which are based on the framework of the method in [1], for monotone linear complementarity problems (LCPs). The difference between the algorithm in [1] and our algorithms is that the neighborhood of smoothing central path in our paper is different to that in [1]. In addition, the difference between Algorithm 2.1 and the algorithm in [1] exists in the calculation of the predictor step. Comparing with the results in [1],the global and local convergence of the two methods can be obtained under very mild conditions. The global convergence of the two methods do not need the boundness of the inverse of the Jacobian. The superlinear convergence of Algorithm 2.1‘ is obtained under the assumption of nonsingularity of generalized Jacobian of Φ(x,y) at the limit point and Algorithm 2.1 obtains superlinear convergence under the assumption of strict complementarity at the solution. The efficiency of the two methods is tested by numerical experiments.  相似文献   

3.
A new SQP type feasible method for inequality constrained optimization is presented, it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations. The directions of the master algorithm are generated by only one quadratic programming, and its step-size is always one, the directions of the auxiliary algorithm are new “secondorder“ feasible descent. Under suitable assumptions, the algorithm is proved to possess global and strong convergence, superlinear and quadratic convergence.  相似文献   

4.
In this paper, we complete a cycle in the construction of methods of feasible directions for solving semi-infinite constrained optimization problems. Earlier phase I-phase II methods of feasible directions used one search direction rule in all of n with two stepsize rules, one for feasible points and one for infeasible points. The algorithm presented in this paper uses both a single search direction rule and a single stepsize rule in all of n . In addition, the new algorithm incorporates a steering parameter which can be used to control the speed with which feasibility is achieved. The new algorithm is simpler to analyze and performs somewhat better than existing, first order, phase I-phase II methods. The new algorithm is globally convergent, with linear rate.The research reported herein was sponsored in part by the National Science Foundation Grant ECS-8713334, the Air Force Office of Scientific Research Contract AFOSR-86-0116, and the State of California MICRO Program Grant 532410-19900.The authors would like to thank Dr. J. Higgins for providing the C-code of Algorithm 3.1.  相似文献   

5.
In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported. Project supported by the National Natural Science Foundation (No. 10261001), Guangxi Science Foundation (Nos. 0236001, 064001), and Guangxi University Key Program for Science and Technology Research (No. 2005ZD02) of China.  相似文献   

6.
In Part 1 of this paper, implementable and conceptual versions of an algorithm for optimal control problems with control constraints and terminal equality constraints were presented. It was shown that anyL accumulation points of control sequences generated by the algorithms satisfy necessary conditions of optimality. Since such accumulation points need not exist, it is shown in this paper that control sequences generated by the algorithms always have accumulation points in the sense of control measure, and these accumulation points satisfy optimality conditions for the corresponding relaxed control problem.This work was supported by the United Kingdom Science Research Council, by the US Army Research Office, Contract No. DAA-29-73-C-0025, and by the National Science Foundation, Grant No. ENG-73-08214-A01.  相似文献   

7.
It is proved that a probability measure is dominated by g-expectation ε_μ[·] if and only if it can begenerated by Girsanov transformation via a process which is uniformly bounded by μ.  相似文献   

8.
A feedback vertex set is a subset of vertices in a graph, whose deletion from the graph makes the resulting graph acyclic. In this paper, we study the minimum-weight feedback vertex set problem in seriesparallel graphs and present a linear-time exact algorithm to solve it.  相似文献   

9.
The adaptive regularization method is first proposed by Ryzhikov et al. in [6] for the deconvolution in elimination of multiples which appear frequently in geoscience and remote sensing. They have done experiments to show that this method is very effective. This method is better than the Tikhonov regularization in the sense that it is adaptive, i.e., it automatically eliminates the small eigenvalues of the operator when the operator is near singular. In this paper, we give theoretical analysis about the adaptive regularization. We introduce an a priori strategy and an a posteriori strategy for choosing the regularization parameter, and prove regularities of the adaptive regularization for both strategies. For the former, we show that the order of the convergence rate can approach O(||n||^4v/4v+1) for some 0 〈 v 〈 1, while for the latter, the order of the convergence rate can be at most O(||n||^2v/2v+1) for some 0 〈 v 〈 1.  相似文献   

10.
11.
An algorithm for minimizing a class of locally Lipschitz functions   总被引:3,自引:0,他引:3  
In this paper, we present an algorithm for minimizing a class of locally Lipschitz functions. The method generalized the -smeared method to a class of functions whose Clarke generalized gradients are singleton at almost all differentiable poinst. We analyze the global convergence of the method and report some numerical results.This work was supported by the National Science Foundation of China. The authors would like to thank the referees for their valuable comments, which led to significant improvements in the presentation.  相似文献   

12.
Some convergence results of one-leg methods for nonlinear neutral delay integro-differential equations (NDIDEs) are obtained. It is proved that a one-leg method is E (or EB) -convergent of order p for nonlinear NDIDEs if and only if it is A-stable and consistent of order p in classical sense for ODEs, where p = 1, 2. A numerical example that confirms the theoretical results is given in the end of this paper. This work was supported by National Natural Science Foundation of China (Grant No. 10871164), the Natural Science Foundation of Hunan Province (Grant No. 08JJ6002), and the Scientific Research Fund of Changsha University of Science and Technology (Grant No. 1004259)  相似文献   

13.
For current sequential quadratic programming (SQP) type algorithms, there exist two problems: (i) in order to obtain a search direction, one must solve one or more quadratic programming subproblems per iteration, and the computation amount of this algorithm is very large. So they are not suitable for the large-scale problems; (ii) the SQP algorithms require that the related quadratic programming subproblems be solvable per iteration, but it is difficult to be satisfied. By using ε-active set procedure with a special penalty function as the merit function, a new algorithm of sequential systems of linear equations for general nonlinear optimization problems with arbitrary initial point is presented. This new algorithm only needs to solve three systems of linear equations having the same coefficient matrix per iteration, and has global convergence and local superlinear convergence. To some extent, the new algorithm can overcome the shortcomings of the SQP algorithms mentioned above. Project partly supported by the National Natural Science Foundation of China and Tianyuan Foundation of China.  相似文献   

14.
An extension of the Gauss—Newton method for nonlinear equations to convex composite optimization is described and analyzed. Local quadratic convergence is established for the minimization ofh F under two conditions, namelyh has a set of weak sharp minima,C, and there is a regular point of the inclusionF(x) C. This result extends a similar convergence result due to Womersley (this journal, 1985) which employs the assumption of a strongly unique solution of the composite functionh F. A backtracking line-search is proposed as a globalization strategy. For this algorithm, a global convergence result is established, with a quadratic rate under the regularity assumption.This material is based on research supported by National Science Foundation Grants CCR-9157632 and DMS-9102059, the Air Force Office of Scientific Research Grant F49620-94-1-0036, and the United States—Israel Binational Science Foundation Grant BSF-90-00455.  相似文献   

15.
An interior point method for monotone linear complementarity problems acting in a wide neighborhood of the central path is presented. The method has -iteration complexity and is superlinearly convergent even when the problem does not possess a strictly complementary solution. Mathematics Subject Classification (2000): 49M15, 65K05, 90C33 Work supported by the National Science Foundation under Grant No. 0139701. An erratum to this article is available at.  相似文献   

16.
In this paper, we propose a new integral global optimization algorithm for finding the solution of continuous minimization problem, and prove the asymptotic convergence of this algorithm. In our modified method we use variable measure integral, importance sampling and main idea of the cross-entropy method to ensure its convergence and efficiency. Numerical results show that the new method is very efficient in some challenging continuous global optimization problems.  相似文献   

17.
LetP andQ be two disjoint simple polygons havingm andn sides, respectively. We present an algorithm which determines whetherQ can be moved by a sequence of translations to a position sufficiently far fromP without colliding withP, and which produces such a motion if it exists. Our algorithm runs in timeO(mn(mn) logm logn) where (k) is the extremely slowly growing inverse Ackermann's function. Since in the worst case (mn) translations may be necessary to separateQ fromP, our algorithm is close to optimal.Work on this paper by the first author has been supported by National Science Foundation Grant No. DMS-8501947. Work on this paper by the second author has been supported by Office of Naval Research Grant No. N00014-82-K-0381, National Science Foundation Grant No. NSP-DCR-83-20085, and by grants from the Digital Equipment Corporation, and the IBM Corporation. Work by the second and third authors has also been supported by a grant from the joint Ramot-Israeli Ministry of Industry Foundation. Part of the work on this paper has been carried out at the Workshop on Movable Separability of Sets at the Bellairs Research Institute of McGill University, Barbados, February 1986.  相似文献   

18.
In this paper, we construct an augmented system of the standard monotone linear complementarity problem (LCP), and establish the relations between the augmented system and the LCP. We present a smoothing-type algorithm for solving the augmented system. The algorithm is shown to be globally convergent without assuming any prior knowledge of feasibility/infeasibility of the problem. In particular, if the LCP has a solution, then the algorithm either generates a maximal complementary solution of the LCP or detects correctly solvability of the LCP, and in the latter case, an existing smoothing-type algorithm can be directly applied to solve the LCP without any additional assumption and it generates a maximal complementary solution of the LCP; and that if the LCP is infeasible, then the algorithm detect correctly infeasibility of the LCP. To the best of our knowledge, such properties have not appeared in the existing literature for smoothing-type algorithms. This work was partially supported by the National Natural Science Foundation of China (Grant No. 10571134), the Natural Science Foundation of Tianjin (Grant No. 07JCYBJC05200), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.  相似文献   

19.
The affine-scaling algorithm, first proposed by Dikin, is presently enjoying great popularity as a potentially effective means of solving linear programs. An outstanding question about this algorithm concerns its convergence in the presence of degeneracy. In this paper, we give new convergence results for this algorithm that do not require any non-degeneracy assumption on the problem. In particular, we show that if the stepsize choice of either Dikin or Barnes or Vanderbei, et al. is used, then the algorithm generates iterates that converge at least linearly with a convergence ratio of , wheren is the number of variables and (0,1] is a certain stepsize ratio. For one particular stepsize choice which is an extension of that of Barnes, we show that the cost of the limit point is within O(/(1–)) of the optimal cost and, for sufficiently small (roughly, proportional to how close the cost of the nonoptimal vertices are to the optimal cost), is exactly optimal. We prove the latter result by using an unusual proof technique, that of analyzing the ergodic convergence of the corresponding dual vectors. For the special case of network flow problems with integer data, we show that it suffices to take = 1/(6mC), wherem is the number of constraints andC is the sum of the cost coefficients, to attain exact optimality.This research is partially supported by the U.S. Army Research Office, contract DAAL03-86-K-0171 (Center for Intelligent Control Systems), by the National Science Foundation, grant NSF-ECS-8519058, and by the Science and Engineering Research Board of McMaster University.  相似文献   

20.
In this paper.two new functions are introduced to depict the Jamison weighted sum of random variables instead using the common methods.their properties and relationships are systematically discussed.We also analysed the implication of the conditions in previous papers.Then we apply these consequences to B-valued random variables.and greatly improve the original results of the strong convergence of the general Janfison weighted sum.Furthermore,our discussions are useful to the corresponding questions of real-valued random variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号