首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a continuing need for increased throughput in the evaluation of new drug entities in terms of their pharmacokinetic (PK) parameters. This report describes an alternative procedure for increasing the throughput of plasma samples assayed in one overnight analysis: the use of parallel high performance liquid chromatography (HPLC) combined with tandem mass spectrometry (parallel LC/MS/MS). For this work, two HPLC systems were linked so that their combined effluent flowed into one tandem MS system. The parallel HPLC/APCI-MS/MS system consisted of two Waters 2690 Alliance systems (each one included an HPLC pump and an autosampler) and one Finnigan TSQ 7000 triple quadrupole mass spectrometer. Therefore, the simultaneous chromatographic separation of the plasma samples was carried out in parallel on two HPLC systems. The MS data system was able to deconvolute the data to calculate the results for the samples. Using this system, 20 compounds were tested in one overnight assay using the rapid rat PK screening model which includes a total of 10 standards plus samples and two solvent blanks per compound tested. This application provides an additional means of increasing throughput in the drug discovery PK assay arena; using this approach a two-fold increase in throughput can be achieved in the assay part of the drug discovery rat PK screening step.  相似文献   

2.
There is a continuing need for increased throughput in the evaluation of new chemical entities in terms of their pharmacokinetic (PK) parameters as part of new drug discovery. This review summarizes various approaches that have been used to increase throughput in this area. The article divides the approaches into two areas: assay enhancement and sample reduction.  相似文献   

3.
Bioanalytical support of plasma pharmacokinetic (PK) studies for drug discovery programs primarily involves the quantitative analysis of dosed compounds using liquid chromatography/atmospheric pressure ionization tandem mass spectrometry (LC/MS/MS) operated in selected reaction monitoring (SRM) mode. However, there is a growing need for information on the metabolism of new chemical entities (NCEs), in addition to the time-concentration profiles from these studies. In this paper, we present a novel approach to not only quantify parent drugs with SRM, but also simultaneously screen for metabolites using a hybrid triple quadrupole/linear ion trap (QqQ(LIT)) instrument. This was achieved by incorporating both the conventional SRM-only acquisition of parent compounds and the SRM-triggered information-dependent acquisition (IDA) of potential metabolites within the same scan cycle during the same LC/MS/MS run. Two test compounds were used to demonstrate the applicability of this approach. Plasma samples from PK studies were processed by simple protein precipitation and the supernatant was diluted with water before injection. The fast scanning capability of the linear ion trap allowed for the information-dependent acquisition of metabolite MS/MS spectra (<1 s/scan), in addition to the collection of adequate data points for SRM-only channels. The MS/MS spectra obtained from potential metabolites in post-dose samples correlated well with the spectra of the parent compounds studied, therefore providing additional confirmatory structure information without the need for repetitive analyses. Relative quantitative time-concentration profiles of identified metabolites were also obtained. Furthermore, this articulated SRM+SRM-IDA approach generated equivalent quantitative results for parent compounds to those obtained by conventional SRM-only analysis. This approach has been successfully used to support discovery PK screening programs.  相似文献   

4.
For higher throughput screening, where the number of new chemical entities (NCEs) to test is rapidly increasing, fast sample turnaround time is essential. In order to increase efficiency a generic high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) method, with a cycle time of 85 s (42 injections/h), was created. This was accomplished through the use of a 1-min ballistic gradient and the optimization of the autosampler. The gradient was optimized by varying the organic mobile phase concentration and examining its ballistic characteristics with respect to matrix ion suppression and compound retention time. The autosampler time could be reduced by optimizing several parameters and by determining the source of most of the carryover in order to reduce the number of syringe and injector washes. Finally, the reliability of the new generic method is demonstrated by comparison of sample data with a standard 2-min linear gradient method that showed that the data sets were well correlated. For plasma AUC (ng.h/mL) of 28 NCEs, the regression line had a slope of 0.92 and the R2 was 0.929. The described method was found to be useful for both rat plasma and tissue samples.  相似文献   

5.
Combinatorial organic synthesis (combinatorial chemistry or CC) and ultrahigh-throughput screening (UHTS) are speeding up drug discovery by increasing capacity for making and screening large numbers of compounds. However, a key problem is to select the smaller set of "representative" compounds from a virtual library to make or screen. Our approach is to select drug-like as well as structurally diverse compounds. The compounds, which are not very drug-like, are less taken into account or excluded even if they contribute to the diversity of the collection. Hence, the first step in the compound selection is to rank compounds in drug-like "degree". To quantify the drug-like "degree", drug-like index (DLI) is introduced in this paper. A compound's DLI is calculated based upon the knowledge derived from known drugs selected from Comprehensive Medicinal Chemistry (CMC) database. The paper describes the way of this knowledge base is formed and the procedure for selecting drug-like compounds.  相似文献   

6.
A sensitive and selective liquid chromatography/electrospray mass spectrometry (LC/ESI-MS) method has been developed for the simultaneous quantitative determination of three new chemical entities (NCEs), of the class of aryloxy-substituted aryl piperazines, in rat liver S9 fraction. S9 fraction samples (0.1 mL) were simply extracted with 2% isopropanol in diethyl ether and the extracts analyzed by HPLC with the detection of the analytes in the selective ion recording (SIR) mode. The determination of the analytes was accurate and reproducible, with a limit of quantification of 50 ng/mL for all the analytes in rat liver S9 fraction. The standard calibration curve for the analytes was linear over the concentration range 50-4000 ng/mL. Analysis accuracy and precision over the concentration range were lower than +/-15%. This method offered significant increase in the analytical throughput, which is illustrated by the 'N-in-One' study of metabolic stability of the compounds in rat liver S9 fractions. The quantitative results from the 'N-in-One' procedure correlated well with those obtained from conventional discrete analyses. In addition, the samples were reanalyzed to allow for detection of the metabolites formed during the same incubation. The metabolites were first characterized by nominal mass measurement of the corresponding protonated molecules. Subsequent tandem mass spectrometry allowed confirmation of the detected metabolites.  相似文献   

7.
It has become increasingly popular in drug development to conduct discovery pharmacokinetic (PK) studies in order to evaluate important PK parameters of new chemical entities (NCEs) early in the discovery process. In these studies, dosing vehicles are typically employed in high concentrations to dissolve the test compounds in dose formulations. This can pose significant problems for the liquid chromatography/tandem mass spectrometric (LC/MS/MS) analysis of incurred samples due to potential signal suppression of the analytes caused by the vehicles. In this paper, model test compounds in rat plasma were analyzed using a generic fast gradient LC/MS/MS method. Commonly used dosing vehicles, including poly(ethylene glycol) 400 (PEG 400), polysorbate 80 (Tween 80), hydroxypropyl beta-cyclodextrin, and N,N-dimethylacetamide, were fortified into rat plasma at 5 mg/mL before extraction. Their effects on the sample analysis results were evaluated by the method of post-column infusion. Results thus obtained indicated that polymeric vehicles such as PEG 400 and Tween 80 caused significant suppression (> 50%, compared with results obtained from plasma samples free from vehicles) to certain analytes, when minimum sample cleanup was used and the analytes happened to co-elute with the vehicles. Effective means to minimize this 'dosing vehicle effect' included better chromatographic separations, better sample cleanup, and alternative ionization methods. Finally, a real-world example is given to illustrate the suppression problem posed by high levels of PEG 400 in sample analysis, and to discuss steps taken in overcoming the problem. A simple but effective means of identifying a 'dosing vehicle effect' is also proposed.  相似文献   

8.
Studying the permeability of compounds across a Caco-2 cell monolayer is an established in vitro model to screen for oral absorption and to evaluate the mechanism of transport. This assay can also be used to evaluate compounds as potential P-glycoprotein substrates and/or inhibitors. The traditional methods of sample analysis (high-performance liquid chromatography (HPLC) with a UV or fluorescence detector) limit the throughput and sensitivity of this assay. Data are presented here describing the use of liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the analysis of samples derived from the Caco-2 cell studies. During the analysis an automatic switching valve was used to divert the flow from the HPLC column to waste for the first minute, preventing the early eluting salts from entering and contaminating the LC/MS interface. This approach allows the rapid and accurate determination of drug transport across the Caco-2 cell monolayer. The high sensitivity and specificity of LC/MS/MS make this technique an ideal candidate for the low concentration and high throughput routine analysis of Caco-2 cell solutions, especially if multiple compounds are administered and analyzed simultaneously. Thus, the use of LC/MS/MS will increase the value of the Caco-2 cell assay as an in vitro screening tool.  相似文献   

9.
In the early stage of drug discovery, thousands of new chemical entities (NCEs) may be screened before a single drug candidate can be identified for development. In order to accelerate the drug discovery process, we have developed higher-throughput enzyme assays to evaluate the inhibition of cytochrome P450 isoforms 2D6 (CYP2D6) and 3A4 (CYP3A4) in human liver microsomes. The assays are based on high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) techniques. The analysis time for each sample was reduced from approximately 20 minutes for the conventional HPLC assay to 30 seconds for the LC/MS/MS assay. For both LC/MS/MS assays, the linearity (r(2) > 0.99), precision (%CV < 15%) and accuracy (% bias <15%) for both inter- and intraday validations were satisfactory. Since the implementation of the LC/MS/MS assays, our sample throughput has increased by over 40-fold.  相似文献   

10.
The measurement of physicochemical properties at an early phase of drug discovery and development is crucial to reduce attrition rates due to poor biopharmaceutical properties. Among these properties, ionization, lipophilicity, solubility and permeability are mandatory to predict the pharmacokinetic behavior of NCEs (new chemical entities). Due to the high number of NCEs, the analytical tools used to measure these properties are automated and progressively adapted to high-throughput technologies. The present review is dedicated to experimental methods applied in the early drug discovery process for the determination of solubility, ionization constants, lipophilicity and permeability of small molecules. The principles and experimental conditions of the different methods are described, and important enhancements in terms of throughput are highlighted. Figure Scheme of the Drug Research Process.  相似文献   

11.
In order to evaluate the pharmacokinetic (PK) profile of rabeprazole (RA) sterile powder for injection, a rapid, sensitive and specific assay for quantitative determination of RA in dog plasma was developed and validated. After a liquid-liquid extraction procedure, samples were analyzed by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) using omepazole as the internal standard (IS). The analyte and IS was chromatographed on a ZORBAX Extend-C(18) analytical column (50 x 2 mm i.d, 5 microm, Agilent Technologies, USA). The assay was linear in the range 1-2000 ng/mL. The lower limit of quantification of RA was 1 ng/mL. The recovery of RA was greater than 70%. The within- and between-batch accuracy was 102.7-107.4% and 103.5-105.7%, respectively. The plasma samples for the PK study were collected at defined time points during and after an intravenous injection (1 mg/kg) to beagle dogs and analyzed by LC-ESI-MS method. The PK parameters, such as half-life, volume of distribution, total clearance and elimination rate constant, were determined. The PK profile of RA gave insights into the application in the clinics.  相似文献   

12.
The development of rapid and sensitive bioanalytical methods in a short time frame with acceptable levels of precision and accuracy is imperative for successful drug discovery. We previously reported that the use of a mobile phase containing an extremely low concentration of ammonium formate or formic acid increased analyte electrospray ionization (ESI) response and controlled against matrix effects. We designated these favorable effects 'LC-electrolyte effects'. In order to support rapid pharmacokinetic (PK) studies for drug discovery, we applied LC-electrolyte effects to the development of generic procedures that can be used to quickly generate reliable PK data for compound candidates. We herein demonstrate our approach using four model tested compounds (Compd-A, -B, -C, and -D). The analytical methods involve generic protein precipitation for sample clean-up, followed by application of fast liquid chromatographic (LC) gradients and the subsequent use of electrospray ionization tandem mass spectrometry (ESI-MS/MS) for individual measurement of the tested compounds in 20-microL plasma samples. Good linearity over the concentration range of 1.6 or 8-25000 ng/mL (r(2) > 0.99), precision (RSD, 0.45-13.1%), and accuracy (91-112%) were achieved through the use of a low dose of formic acid (0.4 mM or 0.015 per thousand) in the methanol/water-based LC mobile phase. The analytical method was quite sensitive, providing a lower limit of quantification of 1.6 pg on-column except for Compd-C (8 pg), and showed negligible ion suppression caused by matrix components. Finally, the assay suitability was demonstrated in simulated discovery PK studies of the tested compounds with i.v./p.o. dosing of rats. This new assay approach has been adopted with good results in our laboratory for many recent discovery PK studies.  相似文献   

13.
In drug discovery today, drug exposure is determined in preclinical efficacy and safety studies and drug effects are related to measured concentrations rather than to the administered dose. This leads to a strong increase in the number of bioanalytical samples, demanding the development of higher throughput methods to cope with the increased workload. Here, a combined approach is described for the high-throughput preparation and liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of drug levels in plasma samples from the preclinical efficacy and safety studies, i.e. exposure studies. Appropriate pharmacokinetic (PK) compartmental models were fitted to data from PK screening studies in the rat, which were subsequently used to simulate the expected plasma concentrations of the respective exposure studies. Information on the estimated drug concentrations was used to dilute the samples to appropriate concentration levels. A Tecan Genesis RSP liquid handling system was utilized to perform automated plasma sample preparation including serial dilution of standard solutions, dilution of plasma samples, addition of internal standard solution and precipitation with acetonitrile. This robotic sample preparation process permitted two studies of 1-96 samples each to be run simultaneously. To ensure the performance of this method the accuracy and precision for diazepam were examined. Two novel drugs were used to illustrate the suggested approach. In conclusion, our method for sample preparation of exposure samples, based on the combined use of PK simulations, a liquid handling system and a fast LC/MS/MS method, increased the throughput more than three times and minimized the errors, while maintaining the required accuracy and precision.  相似文献   

14.
The measurement of intracellular calcium fluxes in real time is widely applied within the pharmaceutical industry to measure the activation of G-protein coupled receptors (GPCRhyp;s), either for pharmacological characterisation or to screen for new surrogate ligands. Initially restricted to G(q) coupled GPCRs, the introduction of promiscuous and chimeric G-proteins has further widened the application of these assays. The development of new calcium sensitive dyes and assays has provided sensitive, homogeneous assays which can be readily applied to high throughput screening (HTS). In this paper we describe the full automation of this assay type using a fluorometric imaging plate reader (FLIPR ) integrated into a Beckman/Sagian system to establish a simple robotic system that is well suited for the current medium throughput screening in this area of lead discovery. Using a recently completed HTS we discuss important determinants for FLIPR based screening, highlight some limitations of the current approach, and look at the requirements for future automated systems capable of keeping up with expanding compound files.  相似文献   

15.
Throughput for early discovery drug metabolism studies can be increased with the concomitant acquisition of metabolite screening information and quantitative analysis using ultra-fast gradient chromatographic methods. Typical ultra-fast high-performance liquid chromatography (HPLC) parameters used during early discovery pharmacokinetic (PK) studies, for example, employ full-linear gradients over 1-2 min at very high flow rates (1.5-2 mL/min) on very short HPLC columns (2 x 20 mm). These conditions increase sample throughput by reducing analytical run time without sacrificing chromatographic integrity and may be used to analyze samples generated from a variety of in vitro and in vivo studies. This approach allows acquisition of more information about a lead candidate while maintaining rapid analytical turn-around time. Some examples of this approach are discussed in further detail.  相似文献   

16.
The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also be used independently for detecting nitrite residues/contamination in environmental/food samples.  相似文献   

17.
High throughput in vitro microsomal stability assays are widely used in drug discovery as an indicator for in vivo stability, which affects pharmacokinetics. This is based on in-depth research involving a limited number of model drug-like compounds that are cleared predominantly by cytochrome P450 metabolism. However, drug discovery compounds are often not drug-like, are assessed with high throughput assays, and have many potential uncharacterized in vivo clearance mechanisms. Therefore, it is important to determine the correlation between high throughput in vitro microsomal stability data and abbreviated discovery in vivo pharmacokinetics study data for a set of drug discovery compounds in order to have evidence for how the in vitro assay can be reliably applied by discovery teams for making critical decisions. In this study the relationship between in vitro single time point high throughput microsomal stability and in vivo clearance from abbreviated drug discovery pharmacokinetics studies was examined using 306 real world drug discovery compounds. The results showed that in vitro Phase I microsomal stability t(1/2) is significantly correlated to in vivo clearance with a p-value<0.001. For compounds with low in vitro rat microsomal stability (t(1/2)<15 min), 87% showed high clearance in vivo (CL>25 mL/min/kg). This demonstrates that high throughput microsomal stability data are very effective in identifying compounds with significant clearance liabilities in vivo. For compounds with high in vitro rat microsomal stability (t(1/2)>15 min), no significant differentiation was observed between high and low clearance compounds. This is likely owing to other clearance pathways, in addition to cytochrome P450 metabolism that enhances in vivo clearance. This finding supports the strategy used by medicinal chemists and drug discovery teams of applying the in vitro data to triage compounds for in vivo PK and efficacy studies and guide structural modification to improve metabolic stability. When in vitro and in vivo data are both available for a compound, potential in vivo clearance pathways can be diagnosed to guide further discovery studies.  相似文献   

18.
Ultra-high-pressure liquid chromatography (UHPLC) systems able to work with columns packed with sub-2 μm particles offer very fast methods to determine the lipophilicity of new chemical entities. The careful development of the most suitable experimental conditions presented here will help medicinal chemists for high-throughput screening (HTS) log P oct measurements. The approach was optimized using a well-balanced set of 38 model compounds and a series of 28 basic compounds such as β-blockers, local anesthetics, piperazines, clonidine, and derivatives. Different organic modifiers and hybrid stationary phases packed with 1.7-μm particles were evaluated in isocratic as well as gradient modes, and the advantages and limitations of tested conditions pointed out. The UHPLC approach offered a significant enhancement over the classical HPLC methods, by a factor 50 in the lipophilicity determination throughput. The hyphenation of UHPLC with MS detection allowed a further increase in the throughput. Data and results reported herein prove that the UHPLC-MS method can represent a progress in the HTS-measurement of lipophilicity due to its speed (at least a factor of 500 with respect to HPLC approaches) and to an extended field of application. Figure The UHPLC approach described here greatly enhanced the time required for log P determination (5' min by compound using UV detection) and, at least, 8 compounds measured in a 5' run when Mass Spectrometry detection in used. These developments offer to medicinal chemists a high-throughput method to estimate the lipophilicity of NCEs Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Experimental section for capillary electrophoresis (CE) measurements, list of the 38 compounds of the calibration set and solvatochromic analyses of the extrapolated retention factors and partition coefficients.  相似文献   

19.
A simple and rapid method using coupled bioluminescent assay was developed to determine level of ADP. ADP is involved in many biological reactions and ADP assay can be used for assaying some reactions universally by monitoring ADP formation or depletion. ADP analysis involves incubation of ADP or extracts containing ADP with pyruvate kinase (PK) and PEP. The ATP formed by this reaction is determined by measuring the intensity of the initial light flash produced when luciferin-luciferase preparation injected into the reaction mixture. In regard to the main role of the PK in this assay, the gene of PK from a Geobacillus species has been cloned in expression vector pET28a (+), sequenced and overexpressed in Escherichia coli. Recombinant protein was purified using Ni-NTA column and then the purified PK was used in a coupled bioluminescent assay for ADP measurement. Kinetic properties of PK are determined according to a bioluminescent assay using firefly luciferase.  相似文献   

20.
Selection of personalized chemotherapy regimen for individual patients has significant potential to improve chemotherapy efficacy and to reduce the deleterious effects of ineffective chemotherapy drugs. In this study, a rapid and high-throughput in vitro drug response assay was developed using a combination of microwell array and molecular imaging. The microwell array provided high-throughput analysis of drug response, which was quantified based on the reduction in intracellular uptake (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose) (2-NBDG). Using this synergistic approach, the drug response measurement was completed within 4 h, and only a couple thousand cells were needed for quantification. The broader application of this microwell molecular imaging approach was demonstrated by evaluating the drug response of two cancer cell lines, cervical (HeLa) and bladder (5637) cancer cells, to two distinct classes of chemotherapy drugs (cisplatin and paclitaxel). This approach did not require an extended cell culturing period, and the quantification of cellular drug response was 4–16 times faster compared with other cell-microarray drug response studies. Moreover, this molecular imaging approach had comparable sensitivity to traditional cell viability assays, i.e., the MTT assay and propidium iodide labeling of cellular nuclei;and similar throughput results as flow cytometry using only 1,000–2,000 cells. Given the simplicity and robustness of this microwell molecular imaging approach, it is anticipated that the assay can be adapted to quantify drug responses in a wide range of cancer cells and drugs and translated to clinical settings for a rapid in vitro drug response using clinically isolated samples.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号