首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using density functional theory, we have theoretically studied various kinds of complexes of cyclopentadienyl and dicyclopentadienyl ligands with zinc and cadmium atoms of oxidation state +1. We first find that a sandwich complex Cp-Zn-Zn-Cp that was recently identified by Resta et al, (Science 2004, 305, 1136) has a large overall binding energy (=-3.19 eV), where Cp denotes the pentamethyl cyclopentadienyl group. In addition, Cp-Zn-Zn-Cp is found to have a binding energy even larger by 0.93 eV, where Cp is a cyclopentadienyl ligand without methyl groups attached. Electronic structure analysis shows accumulation of electron density between Zn atoms, confirming the existence of Zn-Zn bond that is as strong as typical transition metal-halide bonds. In addition, our calculation suggests the possible existence of similar complexes Cp-Zn-Cd-Cp and Cp-Zn-Cd-Cp with a Zn-Cd bond not known thus far. Furthermore, study on the dimetallic complexes of dicyclopentadienyl ligands also predicts results which hold potential application to organometallic chemistry and organic synthesis: (a) Complexes involving a stiff ligand Dp can presumably exist in the form of dimerized sandwich complexes Dp-2M(1)-2M(2)-Dp (M(1), M(2) = Zn, Cd) with two metal-metal bonds. Their overall binding energies amount to -1.84 to -3.48 eV depending upon the kinds of metallic atoms, the strongest binding corresponding to dizinc complex. (b) Complexes involving more flexible ligand Ep can also form similar sandwich complexes Ep-2M(1)-2M(2)-Ep, but with much larger overall binding energies (=-4.97 to -7.09 eV). In addition, they can also exist in the form of nonsandwich complexes M(1)-Ep-M(2) involving only one ligand. Unlike most of dimetallic complexes of other transition metals, syn conformations are found to be exceptionally stable due to the formation of M(1)-M(2) bonds. Careful electronic structure analysis gives deep insight into the nature of observed phenomena.  相似文献   

2.
The thermal unimolecular isomerization of fluoroethylidenes to the corresponding fluoroethylenes has been studied by the MNDO method. It has been shown that fluorine substitution on the carbene carbon increases the activation energy in comparison with the ethylidene rearrangement. To understand the reason for this increase in the activation energy, the charge-transfer effects have been analyzed. Fluorine substitution at other positions does not significantly affect the activation energies. The thermodynamic parameters for the reaction have been evaluated, using vibrational and rotational spectral data calculated in this work. RRKM calculations have been performed and high-pressure Arrhenius parameters calculated. Hydrogen–deuterium kinetic isotope effects indicate that the reaction rates are altered considerably on isotopic substitution, and the change in reaction rates depends upon the position of deuterium substitution, as well as on the number of hydrogens replaced by deuterium atoms. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
The reactions of the complexes CpCo(CO)L (Cp = cyclopentadienyl, L = CO, PPh3) with ClCH2CN have been investigated. Chloroacetonitrile reacts with CpCo(CO)PPh3 to give the cationic complex [CpCo(CH2CN)(CNCH2Cl)PPh3]+, which has been isolated and characterized. Compounds of the type [CpCo(CH2CN)(bipy)]+ BPh4? and CpCo(CH2CN)PPh3CN have been obtained by substitution reactions.  相似文献   

4.
5.
6.
Bromomethane-water 1:2 complexes have been theoretically studied to reveal the role of hydrogen bond and halogen bond in the formation of different aggregations. Four stable structures exist on the potential energy surface of the CH3Br(H2O)2 complex. The bromine atom acts mainly as proton acceptor in the four studied structures. It is also capable of participating in the formation of the halogen bond. The properties and characteristics of the hydrogen bond and the halogen bond are investigated employing several different quantum chemical analysis methods. Cooperative effects for the pure hydrogen bonds or the mixed hydrogen bonds with halogen bonds and the possibility of describing cooperative effects in terms of the topological analysis of the electronic density or the charge-transfer stabilization energy are discussed in detail. An atoms-in-molecules study of the hydrogen bond or the halogen bond in the bromomethane-water 1:2 complexes suggests that the electronic density topology of the hydrogen bond or the halogen bond is insensitive to the cooperative effect. The charge-transfer stabilization energy is proportional to the cooperative effect, which indicates the donor-acceptor electron density transfer to be mainly responsible for the trimer nonadditive effect.  相似文献   

7.
The hydrogen-bonded complexes involving formaldehyde and a series of proton donors of varying strengths, have been investigated at different levels of ab initio MO theory. The structures of the studied complexes were SCF optimized at the 6-31G basis set level. The binding energy was estimated employing basis set superposition correction, zero-point vibrations and MP2 correlation contribution at the different basis set: STO-3G; 6-31G; MP2/6-31G; 6-31G**; MP2/6-31G**; 6-311G(2d, 2p) and MP2/6-311G(2d, 2p). Linear relationships were found of the calculated binding energy with: the calculated shift in the carbonyl stretching frequency, the changes in carbonyl bond length and the optimum value of hydrogen-bond distance; furthermore the calculations confirm a parallel trend between the proton-donor ability and the strength of the hydrogen bond.  相似文献   

8.
9.
The thermal rearrangement reactions of chloromethylsilane, (chloromethyl)dimethylsilane, and (chloromethyl)vinylsilane have been studied by use of the density functional theory method at the B3LYP/6-311G(d, p) level. The structures of the reactants, transition states, and the products were determined and fully optimized. The geometries of the different stationary points and the harmonic vibrational frequencies were calculated at the same level. The results showed that thermal rearrangement of the chloromethylsilanes occurred via one pathway. The chlorine atom migrated from the carbon atom to the silicon atom, and the hydrogen atom migrated simultaneously from the silicon atom to the carbon atom through a double-three-membered-ring transition state, forming methylchlorosilane, trimethylchlorosilane, and vinylmethylchlorosilane. The energy barriers of the three rearrangements calculated at the B3LYP/6-311G(d, p) level were 217.4, 201.6, and 208.7 kJ mol?1, respectively. The effects of alkyl substituents on silicon atom are discussed. Changes of thermodynamic functions, equilibrium constant, and reaction rate constant were calculated in accordance with Eyring transition-state theory over the temperature range 400–1,500 K.  相似文献   

10.
Organoboron complexes have potential application in organic light-emitting devices (OLEDs). Our group has synthesized four phenolpyridyl boron complexes (Inorg. Chem. 2006, 45, 2788), which can function as an electron transport materials (ETM), white and blue emitters, and exhibit high efficiency and stability. To reveal the relationship between the properties and structures of these functional materials, theoretical analysis of spectral properties and electronic structures of these complexes was systematically characterized with the B3LYP and 6-31G* basis set. The calculated absorption and emission spectra of these systems are in good agreement with the experimental ones. It is clear seen that these transitions are charge transferred along 2,6-bis(2-hydroxyphenyl)pyridyl boron moiety, and the contribution of boron atom in these compounds to the main transition orbitals is vanishingly small. The substitution of methyl and methoxyl for hydrogen does not change the absorption wavelengths and transition natures, but influences the radioactive efficiencies and electron transport properties, which are observed and discussed in detail. Furthermore, large red shifts of fluorescence are caused by replacing the hydrogen with CN or NO2 groups, which indicates that they are potential candidates as green-light-emitting materials. These results are favorable to further understanding the photophysical properties of this kind of complexes.  相似文献   

11.
The 1,2‐rearrangements in silylmethanethiol were studied by ab initio molecular orbital theory. The structures of reactants, transition states, and products were fully optimized at the MP2(full)/6‐31G(d) levels. Based on the MP2(full)/6‐31G(d) geometries, harmonic frequencies were obtained. Energies were computed at the G3 level of theory with MP2(full)/6‐31G(d) zero‐point corrections. The results indicate that the 1,2‐rearrangement in silylmethanethiol may occur via two pathways. Pathway A involves the 1,2‐migration of mercapto group from carbon to silicon via a double three‐membered ring transition state, forming methylsilanethiol. The barrier for reaction A is 275.0 kJ/mol. Pathway B involves the 1,2‐migration of silyl group from carbon to sulfur via a four‐membered ring transition state, forming methylthiosilane. The barrier for reaction B is 262.3 kJ/mol. Thermodynamic and kinetic properties of the reactions were analyzed over a temperature range of 300–1,300K. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

12.
Calcium borohydride reacts with sodium cyclopentadienyl compounds in tetrahydrofuran solution to give the corresponding calcium cyclopentadienyl complexes. The reaction proceeds easily and gives high yields.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 377–378, February, 1993.  相似文献   

13.
罗树常 《分子科学学报》2020,(1):62-68,I0005
基于DFT-BS方法,选择不同的泛函方法和基组,研究anti,anti甲酸桥联双核铜配合物的磁学性质.结果表明,在B3P86/TZV水平计算得到顺磁中心Cu(Ⅱ)离子间磁耦合常数为-55.63 cm^-1,与实验值-55.60 cm^-1最接近,可准确描述甲酸桥联双核铜配合物的磁学性质.顺磁中心Cu(Ⅱ)与甲酸根桥联配体间有较强的轨道作用,其磁轨道主要来源于Cu(Ⅱ)离子的3dyz轨道、桥联配体甲酸根离子的离域π键,顺磁中心Cu(Ⅱ)离子为自旋离域机理.在不同桥联模式的甲酸桥联双核铜配合物中,随顺磁中心Cu(1)自旋密度增加,Cu(Ⅱ)离子间的反铁磁性贡献逐渐增加,其磁耦合常数J值逐渐减小.  相似文献   

14.
15.
Using density functional theory within the generalized gradient approximation, we have theoretically studied the formation of neutral metal-aromatic complexes R1-M and R1-M-R2, where M is either neutral lithium, calcium, or gallium and R1 or R2 is benzene or borazine. We first find that calcium atom is an effective mediator for cooperative formation of a sandwich complex with borazine, while others are not. When benzene and borazine are mixed in the presence of calcium, a 1:2:1 mixture of benzene-calcium-benzene, borazine-calcium-benzene, and borazine-calcium-borazine is expected. An "A"-shaped structure is predicted for homo- and heterocomplexes of borazine with partial B-B and B-C bonds, while two rings are planar in the case of homocomplexes of benzene. Our analysis of the electron density distributions in HOMO-1 to LUMO in terms of orbital symmetry in conjunction with analysis of l,m-projected electronic local density of states shows that this correlates with the charge transfer and the interaction of pi states of the rings mediated by empty d-states of Ca, which is ultimately related to the polarity of the B-N bond. We find that there is a large accumulation of electron density on particular atoms upon complex formation, predicting characteristic behavior in electron-transfer reaction and nucleophilic reaction different from those for pure benzene or borazine molecule. The hetero-sandwich complex is of particular interest due to its asymmetrical distribution of excess electrons.  相似文献   

16.
17.
The mechanism of the reaction of the ammonia nucleophilic addition to nitriles RC≡N, both free and activated in the platinum complex trans-[PtCl2(N≡CCH3)2], was studied in detail by theoretical quantumchemical methods. The reaction resulting in the formation of free or coordinated amidines proceeds through consecutive formation of an orientation complex, a six-membered cyclic transition state, and a final reaction product, in which an amidine is in the E-configuration. Water containing in a solvent plays a role of a promoter of this process. The activation effect is interpreted from the viewpoint of both kinetic and thermodynamic factors. It was shown that the mechanism of the reaction product E-Z-isomerization includes the deprotonation of the amino-group nitrogen atom, the change of the coordinated ligand conformation, and the protonation of the nitrogen atom.  相似文献   

18.
The trisubstituted methyl-phenyl-silyl-cyclopentadienes [Me-Ph-C5H3(SiMe2X)] (X = Me, Cl, NHt-Bu) and [(Me-Ph-C5H3)2SiMe2] and the lithium salts Li2[Me-Ph-C5H2(SiMe2Nt-Bu)] and Li2[(Me-Ph-C5H2)2SiMe2] have been isolated by conventional methods and characterized by NMR spectroscopy. Desilylation of [Me-Ph-C5H3(SiMe3)] with ZrCl4(SMe2)2 gave the monocyclopentadienyl complex [Zr(η5-1-Ph-3-Me-C5H3)Cl3]. The ansa-metallocene [Zr{(η5-2-Me-4-Ph-C5H2)SiMe25-2-Ph-4-Me-C5H2)}Cl2] was obtained from the mixture of isomers formed by transmetallation of Li2[(Me-Ph-C5H2)2SiMe2] to ZrCl4 and characterized as the meso-diastereomer by X-ray diffraction methods. Similar transmetallation of Li2[Me-Ph-C5H2(SiMe2Nt-Bu)] gave the silyl-η-amido complex [Zr{η5-2-Me-4-Ph-C5H2(SiMe2-η-Nt-Bu)}Cl2] that was further alkylated to give [Zr{η5-2-Me-4-Ph-C5H2(SiMe2-η-Nt-Bu)}R2] (R = Me, CH2Ph) and used as a catalyst precursor, activated with MAO, for ethene and propene polymerization. All of the new compounds were characterized by elemental analysis and NMR spectroscopy.  相似文献   

19.
《Polyhedron》1999,18(20):2645-2650
Photolysis of tetramethyldisilane-bridged bis(cyclopentadienyl) tetracarbonyl di-iron in the presence of phosphite or phosphine ligand afforded the corresponding Fe–Fe bond complexes with one carbonyl replaced by a phosphite or phosphine ligand: [(Me2SiSiMe2)Cp2Fe2(CO)(PR3)(μ-CO)2] (R=OPh, 1; OEt, 2; Ph, 3). When these complexes were heated in refluxing xylene, they become rearranged to the corresponding products [(Me2SiCpFe)2(CO)3(PR3)] (R=OPh, 4; OEt, 5; Ph, 6). It was found that, after phosphite or phosphine ligand substitution, the rearrangement became facile. The molecular structures of 16 were characterized by IR, 1H NMR spectra and elemental analyses. The crystal structures of 1 and 4 were determined by X-ray diffraction analysis.  相似文献   

20.
The structures of donor-acceptor complexes of syn-benzoyl azide, its 2-methyl- and 2,6-dimethyl-substituted derivatives with BF3, AlCl3, and SbCl5, and the corresponding transition states of the rearrangement into isocyanates were studied by the PBE/TZ2P method in the framework of the density functional theory (DFT). The complexes are formed at the oxygen and nitrogen atoms of the acyl azide group and have the composition 1: 1 or 1: 2 depending on the Lewis acid (L) structure. The complexes at the oxygen atom are more stable; the most stable complexes are formed by the reactions of acyl azides with AlCl3. Complex formation with Lewis acids decreases the activation energy of the transformation of acyl azides into isocyanates owing to the +M effect and stabilization of the Ar-C(O-L(1?))=N(1)-N(2)(1+)≡N(3) mesomeric form. The activation energy decreases with an increase in the number of ortho-methyl substituents in benzoyl azide due to the +I effect of the phenyl group. The turn of the phenyl ring at almost 90° with respect to the CON3 group is needed for the rearrangement to occur, and the energy necessary for this process is ~8 kcal mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号