首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite nanoporous electrode SnO2/TiO2 was fabricated for the dye sensitized solar cell (DSSC) with N3 (Cis-Ru). After introducing of TiO2, the open-circuit photovoltage (Voc) was higher than that of the pure SnO2 electrode, while short-circuit photocurrent (Isc) was varied with the ratio of the TiO2. Appropriate content of the TiO2 can be beneficial to the efficiency of the solar cell, and it gives negative impact on the composite electrode when the content of TiO2 is higher.  相似文献   

2.
Electrode structures and photovoltaic properties of porphyrin-sensitized solar cells with TiO2 and Nb-, Ge-, and Zr-added TiO2 composite electrodes were examined to disclose the effects of partial substitution of Ti atom by the other metals in the composite electrodes. The TiO2 and Nb-, Ge-, and Zr-added TiO2 composite electrodes were prepared by sol-gel process using laurylamine hydrochloride as a template for the formation of micellar precursors yielding well-defined mesoporous nanocrystalline structures, as in the cases of the formation of silica and titania tubules and nanoparticles by the templating mechanism. The TiO2 and Nb-, Ge-, and Zr-added TiO2 composite electrodes were characterized by transmission electron microscopy, BET surface area analysis, X-ray diffraction analysis, Raman spectroscopy, and impedance measurements. The TiO2 anatase nanocrystalline structure is retained after doping a small amount (5 mol %) of Nb, Ge, or Zr into the TiO2 structure, suggesting the homogeneous distribution of the doped metals with replacing Ti atom by the doped metal. The power conversion efficiency of the porphyrin-sensitized solar cells increases in the order Zr-added TiO2 (0.8%) < Nb-added TiO2 (1.2%) < TiO2 (2.0%) < Ge-added TiO2 cells (2.4%) under the same conditions. The improvement of cell performance of the Ge-added TiO2 cell results from the negative shift of the conduction band of the Ge-added TiO2 electrode. The Ge-added TiO2 cell exhibited a maximum power conversion efficiency of 3.5% when the porphyrin was adsorbed onto the surface of the Ge-added TiO2 electrode with a thickness of 4 microm in MeOH for 1 h.  相似文献   

3.
采用恒电位法在铟锡氧化物导电玻璃(ITO)上制备了高度有序一维ZnO纳米棒阵列,将ZnO纳米棒阵列在TiO2溶胶中采用提拉法制备出了一维TiO2/ZnO核壳式纳米棒阵列.在一维TiO2/ZnO核壳式纳米棒阵列上电沉积CdS纳米晶得到一维CdS/TiO2/ZnO核壳式纳米棒阵列,然后在一维CdS/TiO2/ZnO核壳式纳米棒阵列上电沉积聚3-己基噻吩(P3HT)薄膜得到P3HT/CdS/TiO2/ZnO核壳式纳米结构薄膜.以该纳米结构薄膜电极为光阳极制备出新型纳米结构杂化太阳电池,研究了该类电池的光电转换性能,初步探讨了该类电池的工作机理.  相似文献   

4.
采用水热法制备出Al3+掺杂二氧化钛薄膜,通过玻璃棒涂于导电玻璃上,在450°C的温度下烧结并将其用N3染料敏化制成染料敏化太阳能电池(DSSCs).通过X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电镜(SEM)及DSSCs测试系统对其进行了测试表征,研究了Al3+掺杂对TiO2晶型及染料敏化太阳能电池的光电性能影响.XPS数据显示Al3+成功掺杂到了TiO2晶格内,由于Al3+的存在,对半导体内电子和空穴的捕获及阻止电子/空穴对的复合发挥重要作用.莫特-肖特基曲线显示掺杂Al3+后二氧化钛平带电位发生正移,并导致电子从染料注入到TiO2的驱动力提高.DSSCs系统测试结果表明,Al3+掺杂的TiO2薄膜光电效率达到6.48%,相对于无掺杂的纯二氧化钛薄膜光电效率(5.58%),其光电效率提高了16.1%,短路光电流密度从16.5mA·cm-2提高到18.2mA·cm-2.  相似文献   

5.
The photocatalytic and plasmonic photothermal cancer cell-killing activity of the metallic Au-capped TiO(2) (Au@TiO(2)) composite colloidal nanopellets has been investigated on HeLa cells under UV-visible (350-600 nm) light irradiation. The Au@TiO(2) composite nanopellets with the uniform Au-capped TiO(2) structure were successfully synthesized by simple reduction of HAuCl(4) on the surface of TiO(2) nanoparticles. The morphological structure and surface properties of Au@TiO(2) were characterized by using UV-visible absorption spectroscopy, TEM, SEM, XPS, EDX and XRD analyses. The formation of hydroxyl radicals (˙OH) was confirmed by photoluminescence (PL) spectra. The photocatalytic and photothermal cell-killing activity of the Au@TiO(2) nanopellets was found to vary with the molar ratio of Au to TiO(2). The direct involvement of the metal particles in mediating the electron transfer from the photoexcited TiO(2) under the band gap excitation is considered to carry out the efficient photocatalytic reaction on the cells. The plasmonic absorption spectra of Au@TiO(2) suspensions were also measured for the evaluation of photothermal cell killing. The charge separation, the interfacial charge-transfer and photothermal activity promoted the photocatalytic-photothermal cancer-cell killing more than TiO(2) alone. The cytotoxic effect of Au@TiO(2) nanopellets with low concentration of gold (TiO(2) : Au molar ratio > 1 : 1) was found to be 100%, whereas that of the commercial TiO(2) (P25) was ca. 50%. The comparative study of the cell viability using Au alone and TiO(2) alone revealed that the synergistic effect of photocatalytic hydroxyl radical formation and Au-plasmonic photothermal heat generation plays a vital role in the cancer cell killing. A plausible mechanism was also proposed for photocatalytic cancer cell killing based on the obtained results.  相似文献   

6.
采用含有不同取代基的卟啉衍生物四羟基苯基卟啉(THPP)和四羧基苯基卟啉(TCPP)分别对纳米TiO2多孔膜电极进行敏化.对两种敏化电极进行了UV-Vis光谱、FTIR光谱和X射线光电子能谱(XPS)测试.结果表明,TiO2与TCPP的作用比与THPP的作用强.在相同浸泡条件下,TiO2电极吸附TCPP的量大于吸附THPP的量.将两种敏化电极分别组装成光电化学电池,从正背两个方向照射光电池,研究它们在不同照射方向下的光电流响应.从光电化学电池的I-V曲线计算TCPP敏化的光电化学池的总光电转换效率(η)为0.13%,而THPP敏化的光电化学电池的η为0.06%.  相似文献   

7.
通过一种简单的水热法制备了TiO2纳米棒。采用微量稀释法研究TiO2纳米棒对绿脓杆菌的抗菌性能,细菌菌落计数基于光密度测试在96孔细胞培养板上生长的细菌给出。抗菌结果表明,TiO2纳米棒对革兰氏阴性菌(绿脓杆菌)表现出明显的抗菌效率。TiO2纳米棒对绿脓杆菌的抗菌效率达到95.2%。结论:TiO2纳米棒具有优异的抗菌性能。  相似文献   

8.
Sol-gel-derived Mg(OH)(2) gel was coated onto TiO(2) nanoparticles, and the subsequent thermal topotactic decomposition of the gel formed a highly nanoporous MgO crystalline coating. The specific surface area of the electrode that was prepared from the core-shell-structured TiO(2) nanoparticles significantly increased compared with that of the uncoated TiO(2) electrode. The increase in the specific surface area of the MgO-coated TiO(2) electrode was attributed to the highly nanoporous MgO coating layer that resulted from the topotactic reaction. Dye adsorption behavior and solar cell performance were significantly enhanced by employing the MgO-coated TiO(2) electrode. Optimized coating of a MgO layer on TiO(2) nanoparticles enhanced the energy conversion efficiency as much as 45% compared to that of the uncoated TiO(2) electrode. This indicates that controlling the extrinsic parameters such as the specific surface area is very important to improve the energy conversion efficiency of TiO(2)-based solar cells.  相似文献   

9.
采用水热合成法在氟掺杂二氧化锡(FTO)导电玻璃基底上得到TiO2纳米阵列薄膜,并进一步通过NaOH溶液水热处理制备了由巢状纳米阵列及纳米片覆盖层构成的TiO2纳米阵列分级结构一体化薄膜.采用场发射扫描电镜(FE-SEM),X射线衍射(XRD),紫外-可见(UV-Vis)漫反射光谱和吸收光谱技术对TiO2薄膜的结构和性质进行表征.FE-SEM结果表明:分级结构TiO2薄膜膜厚为1.5μm,薄膜由一层纳米片覆盖层(约0.2μm高)和一层巢状纳米阵列层(约1.3μm高)组成.XRD谱图表明TiO2薄膜为锐钛矿相.UV-Vis光谱显示分级结构TiO2薄膜具有较强的光捕获能力和染料吸附能力.TiO2纳米片/巢状分级结构纳米阵列薄膜作为光阳极,可有效地提高染料敏化太阳能电池的光电转换效率,其短路电流(Jsc)为7.79mA·cm-2,开路电压(Voc)为0.80V,填充因子(FF)为0.40,光电转换效率(η)为2.48%,其光电转换效率较TiO2纳米阵列薄膜提高了近10倍.  相似文献   

10.
A nanoporous CaCO3 overlayer-coated TiO2 thick film was prepared by the topotactic thermal decomposition of Ca(OH)2, and its performance as an electrode of a dye-sensitized solar cell was investigated. As compared to bare TiO2, nanoporous CaCO3-coated TiO2 provided higher specific surface area and, subsequently, a larger amount of dye adsorption; this in turn increased short-circuit current (Jsc). Furthermore, the CaCO3 coating demonstrated increased impedance at the TiO2/dye/electrolyte interface and increased the lifetime of the photoelectrons, indicating the improved retardation of the back electron transfer, which increases Jsc, open-circuit voltage (Voc), and fill factor (ff). Thereby, the energy conversion efficiency (eta) of the solar cell improved from 7.8 to 9.7% (an improvement of 24.4%) as the nanoporous CaCO3 layer was coated onto TiO2 thick films.  相似文献   

11.
A density functional theory (DFT) method (periodic DMol3) with full geometry optimization was used to study the adsorption of nitrogen-containing heterocycles such as pyrazole, imidazole, 1,2,4-triazole, pyridine, pyrimidine, pyrazine, and 4-t-butylpyridine (TBP) on TiO2 anatase (101), (100), and (001) surfaces. All structures displayed a negative shift in the TiO2 Fermi level upon adsorption of N-containing heterocycles. Additionally, the heterocycles were examined as an additive in an I-/I3- redox electrolyte solution of dye-sensitized TiO2 solar cell. The DFT results indicated that the negative shift of TiO2 Fermi level was due to the adsorbate dipole moment component normal to the TiO2 surface plane, and corresponded to the enhanced open-circuit photovoltage (Voc) and the reduced short-circuit photocurrent density (Jsc) in a dye-sensitized solar cell.  相似文献   

12.
以商用TiO2P25为催化剂,分别在TiO2/UV/O2和TiO2/UV/N2两种体系下进行降解对氯硝基苯(pCNB)试验.采用ESR对两种体系下光催化反应形成的·OH进行测定,利用LC-MS对两种体系下反应形成的中间产物进行了定性和定量分析,最后对pCNB降解过程中氯和硝基的存在形式进行了研究.结果表明:TiO2/UV/O2体系的催化降解效果要明显优于TiO2/UV/N2体系;两种反应体系都有·OH产生,并且TiO2/UV/O2体系产生的·OH的量多于TiO2/UV/N2体系产生的·OH的量;TiO2/UV/O2体系形成的中间产物的种类要多于TiO2/UV/N2体系形成的,苯环上的氢、氯、硝基均可被·OH取代形成对硝基酚(pNP)、5-氯-2-硝基酚(5-C-2-PN)等酚类物质;两种体系下均有Cl-和NO2-存在,其中Cl-生成势与pCNB的去除势一致,只有TiO2/UV/O2体系中存在NO3-.  相似文献   

13.
采用两步溶剂热反应制备了底层为分等级锐钛矿的TiO_2纳米线阵列,上层为分等级锐钛矿的TiO_2纳米线薄膜的双层结构电极.通过XRD和SEM对其组成和形貌进行了表征,并考察了纳米线薄膜对染料敏化太阳电池(DSSC)光伏性能的影响.实验结果表明,分等级锐钛矿的TiO_2纳米线作为DSSC的光阳极,光电转换效率为4.39%,其效率高于光滑的TiO_2纳米线光阳极电池效率(2.07%).  相似文献   

14.
将 Cd S纳米粒子复合在 Ti O2 纳米多孔膜上 ,用染料 Ru( bpy) 2 ( NCS) 2 对此复合半导体纳米膜电极进行敏化 ,测量了不同 Cd S复合量的 ITO/Ti O2 /Cd S/Ru( bpy) 2 ( NCS) 2 光阳极组成光电池的能量转换效率 .实验证明 ,ITO/Ti O2 /Cd S/Ru( bpy) 2 ( NCS) 2 作为太阳电池光阳极的能量转换效率与 Ti O2 /Cd S复合半导体中 Cd S的含量有关 .当 Cd S复合时间为 5 min的电池的短路电流为 5 .2 3A/m2 ,开路电压为 0 .71 6 V,能量转换效率为 0 .77% .  相似文献   

15.
本文合成了两个结构新颖的三芳基咪唑类化合物5(Im)和6(Bn-Im),然后通过1,3-偶极化反应合成了C60吡咯烷衍生物7(Im-C60)和8(Bn-Im-C60),用MS, NMR, IR 等对其结构进行了表征。初次组装了七个太阳能电池,结构分别为FTO/TiO2/CdSe/Pt, FTO/TiO2/C60/Pt,FTO/TiO2/Im-C60/Pt,FTO/TiO2/ Bn-Im-C60/Pt, FTO/TiO2/C60-CdSe/Pt,FTO/TiO2/Im-C60-CdSe/Pt和FTO/TiO2/Bn-Im-C60-CdSe /Pt,对其光电性能进行了表征,结果表明:与CdSe敏化太阳能电池相比,以Im-C60-CdSe和Bn-Im-C60-CdSe为敏化剂的电池效率分别增加了5.28%和40.08%。  相似文献   

16.
The sea urchin TiO(2) (SU TiO(2)) particles composed of radially aligned rutile TiO(2) nanowires are successfully synthesized through the simple solvothermal process. SU TiO(2) was incorporated into the TiO(2) nanoparticle (NP) network to construct the SU-NP composite film, and applied to the CdS/CdSe/ZnS quantum-dot-sensitized solar cells (QDSSCs). A conversion efficiency of 4.2% was achieved with a short-circuit photocurrent density of 18.2 mA cm(-2) and an open-circuit voltage of 531 mV, which corresponds to ~20% improvement as compared with the values obtained from the reference cell made of the NP film. We attribute this extraordinary result to the light scattering effect and efficient charge collection.  相似文献   

17.
A novel core/shell structured TiO(2)/polyaniline nanocomposite was fabricated by grafting aniline on aminobenzoate monolayer that is chemically adsorbed on the TiO(2) nanocrystal surface. The formation and nanostructure of the nanocomposite were investigated by FT-IR and UV-Vis spectra, TEM, FE-SEM, and TG-DTA analysis. Adsorption of aminobenzoate on the TiO(2) surface is an effective method to obtain the uniform nanocomposite. The thickness of polyaniline layer coating on the TiO(2) nanocrystal surface can be controlled in a range of 2-5 nm by this method. A photoelectrochemical study was carried out on the TiO(2)/polyaniline nanocomposite, and found that polyaniline in the nanocomposite acted as a visible-light sensitizer in a photoelectrochemical reaction. The sensitization effect increased with increasing binding strength between polyaniline and TiO(2). A dye-sensitized solar cell with a short circuit current density of 0.19 mA/cm(2) and an open circuit voltage of 0.35 V was fabricated by using the TiO(2)/polyaniline nanocomposite film as a sensitized electrode.  相似文献   

18.
TiO2 has attracted considerable attention due to its stability, non-toxicity, low cost, and great potential for use as a photocatalyst in environmental applications. Since strong metal-support interaction (SMSI) of titania-supported noble metals was first reported in 1978, titania supported catalyst has been intensively studied in heterogeneous catalysis. However, the effective catalytic activity was restricted due to the low surface area of TiO2. Recently, TiO2-based nanotubes were extensively investigated because of their potentials in many areas such as highly efficient photocatalysis and hydrogen sensor.In the present study, formation of titanium oxide (TiO2) nanotubes was carried out by hydrothermal method, with TiO2 nanoparticle-powders immersed in concentrated NaOH solution in an autoclave at 110 ℃. Preparation of nano-size Pt on TiO2-nanoparticles or TiO2-nanotubes was performed by photochemical deposition method with UV irradiation on an aqueous solution containing TiO2 and hexachloroplatinic acid or tetrachloroauric acid. The TEM micrographs show that TiO2-nanotubes exhibit ~300 nm in length with an inner diameter of ~ 6 nm and the wall thickness of ~ 2 nm, and homogeneous nanosize Pt particles (~ 2 nm) were well-dispersed on both nanoparticle- and nanotube- titania supports. It also shows the nanotube morphology was retained up2o n Pt-immobilization. Nitrogen adsorption isotherm at 77K resulted a high surface area (~ 200m/g) of TiO2-nanotubes, which is about 40 times greater than that of "mother" TiO2 nanoparticles (~5 m/g). All the spectroscopic results exhibited that the nanotube structure was not significantly affected by the immobilized Pt particles. Ti K-edge XANES spectra of TiO2 nanotube and Pt/TiO2-nanotube represent that most titanium are in a tetrahedral coordination with few retained in the octahedral structure.In the in-situ FT-IR experiments, an IR cell was evacuated to a pressure of 10-5 torr at room temperature as soon as the catalyst-pellet, Pt/TiO2 or Pt/TiO2-nanotube, was placed inside the cell.Then, 60 torr of hydrogen was introduced into the cell and subsequently the temperature was programmed to increase from room temperature to 300℃ at a constant heating rate of 5℃/min.For Pt/TiO2, an IR peak at 2083 em-1 started to appear at 200℃ with a maximum intensity at 250℃ and then decreasing as temperature increased. The 2083 em-1 IR peak corresponds to the linearly adsorption of CO on the well-dispersed Pt sites. Simultaneously, the IR bands of gaseous methane at 3016 em-1 started to appear at 225℃ and the peak intensity increased with temperature. The results reveal that Pt/TiO2 can adsorb gaseous CO2 and further catalyzes the reduction of CO2 by H2 through the intermediate CO, which further produces gaseous methane. While for the Pt/TiO2-nanotube catalyst, methane was produced at relatively low temperature, 100℃, and it catalyzed the direct conversion of CO2 to CH4. The absence of intermediate CO-adsorption signals durinng the temperature programmed process indicates that the prepared TiO2 nanotube-supported nanosize Pt possesses a potent capability for CO2 adsorption and highly catalytic activity in the hydrogenation of CO2, and was superior to the conventional Pt/TiO2 catalyst. The catalytic activity of Pt/TiO2-nanotube was indeed significantly enhanced by the high surface area of TiO2-nanotubes.Details will be discussed.  相似文献   

19.
CdS修饰TiO2纳米带制备及光催化降解有毒有机污染物   总被引:2,自引:0,他引:2  
以硫酸钛为原料,在210℃低温下,水热制备TiO2纳米带.通过沉淀法用CdS修饰TiO2纳米带表面,制得TiO2@CdS复合光催化剂,采用XRD、TEM和反射紫外对其结构及光化学特性进行初步表征.以可见光(λ≥450 nm)光催化降解罗丹明B(Rhodamine B,RhB)、水杨酸(Salicylic Acid,SA)及2,4-二氯苯酚(2,4-Dichlorophenol,2,4-DCP)为探针反应,研究反应温度、介质和负载CdS对TiO2@CdS结构性能的影响.结果表明,所制备的TiO2纳米带分散性好.复合粉末由锐钛矿相TiO2和立方相CdS组成.常温25℃中性介质中用CdS修饰的TiO2的活性,在可见光照射下,为单纯TiO2纳米带的29倍.同时,TiO2也促进了CdS可见光光催化活性的提高.通过跟踪降解体系紫外-可见光谱(UV-vis)、红外光谱(FTIR)和总有机碳(TOC)测定,结果发现TiO2@CdS/vis体系在pH 7.0时,对SA的降解率较TiO2纳米带有显著地提高,反应15 h和21 h后,RhB和2,4-DCP的矿化率分别可达到47.8%和30.8%.  相似文献   

20.
We demonstrate a facile localized reduction approach to synthesizing a Au nanoparticle-decorated Keggin ion/TiO(2) photococatalyst for improved solar light photocatalysis application. This has been achieved by exploiting the ability of TiO(2)-bound Keggin ions to act as a UV-switchable, highly localized reducing agent. Notably, the approach proposed here does not lead to contamination of the resultant cocatalyst with free metal nanoparticles during aqueous solution-based synthesis. The study shows that for Keggin ions (phosphotungstic acid, PTA), being photoactive molecules, the presence of both Au nanoparticles and PTA on the TiO(2) surface in a cocatalytic system can have a dramatic effect on increasing the photocatalytic performance of the composite system, as opposed to a TiO(2) surface directly decorated with metal nanoparticles without a sandwiched PTA layer. The remarkable increase in the photocatalytic performance of these materials toward the degradation of a model organic Congo red dye correlates to an increase of 2.7-fold over that of anatase TiO(2) after adding Au to it and 4.3-fold after introducing PTA along with Au to it. The generalized localized reduction approach to preparing TiO(2)-PTA-Au cocatalysts reported here can be further extended to other similar systems, wherein a range of metal nanoparticles in the presence of different Keggin ions can be utilized. The composites reported here may have wide potential implications toward the degradation of organic species and solar cell applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号