首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibrium constants (log K) for the substitution of coordinated H(2)O in aquacyanocobyrinic acid heptamethyl ester (aquacyanocobester, ACCbs) and stable yellow aquacyanocobyrinic acid heptamethyl ester (stable yellow aquacyanocobester, ACSYCbs), in which oxidation of the C5 carbon of the corrin interrupts the normal delocalized system of corrins, by ligands with soft (CN(-), SO(3)(2-), and S(2)O(3)(2-)) and hard (NO(2)(-) and N(3)(-)) donors have been determined. The ligands with a harder donor atom (N in N(3)(-) and NO(2)(-)) produce ΔH values that are more negative in their reactions with ACSYCbs than with ACCbs. If the donor atom is softer (C in CN(-) and S in SO(3)(2-)), then ΔH is less positive, or more negative, for reactions with ACCbs than with ACSYCbs. The softer metal in ACCbs has a preference for softer ligands and the harder metal in ACSYCbs for the harder ligands. A kinetics study in which CN(-) substitutes H(2)O on Co(III) shows that ACCbs is more labile than ACSYCbs; the second-order rate constant k(II) is between 4.6 (at 5 °C) and 2.6 (at 35 °C) times larger. ΔH(?) for the reaction of CN(-) with ACCbs is smaller by some 12 kJ mol(-1) than that for the reaction with ACSYCbs, consistent with an earlier transition state in which bonding between the softer metal of ACCbs and the ligand is greater than that of ACSYCbs with its harder metal. This difference in ΔH(?) makes ACCbs over 100 times more labile, although the effect is masked by a ΔS(?) value that is over 30 J K(-1) mol(-1) more negative. There is a significant increase in the inertness of Co(III) upon a decrease in the extent of conjugation of the corrin ligand. Modifying the electronic structure of the equatorial ligand in the cobalt corrins can modify the thermodynamics and kinetics of its reactions with exogenous ligands.  相似文献   

2.
To probe the cis effect of the corrin macrocycle in vitamin B12 derivatives, equilibrium constants for the substitution of coordinated H2O in aquacobalamin (vitamin B12a, H2OCbl+) and in aqua-10-chlorocobalamin, H2O-10-ClCbl+, (in which Cl has replaced the C10 H) by an exogenous ligand, L (L = an anion, NO2-, SCN-, N3-, OCN-, S2O3(2-), NCSe- or a neutral N-donor, CH3NH2, pyridine, imidazole) have been determined. The cis influence reported in the electronic spectra of the cobalamins is observed in the spectra of L-10-ClCbls as well. Anionic ligands bind more strongly to H2O-10-ClCbl+ than to H2OCbl+ with log K values between 0.10 and 0.63 (average 0.26) larger; the converse is true for the neutral N-donor ligands, where log K is between 0.17 and 0.3 (average 0.25) smaller. Semi-empirical molecular orbital (SEMO) calculations using the ZINDO/1 model on the hydroxo complexes show that charge density is delocalised from the axial donor atom to the metal and Cl. This explains why coordinated OH- is a poorer base in HO-10-ClCbl than in HOCbl and the pK(a) of H2O-10-ClCbl+ is lower than that of H2OCbl+. It further explains why, because of the ability of the metal in concert with the C10 Cl to accept charge density from the ligand, an anionic ligand will bind more strongly to Co(III) in H2O-10-ClCbl+ than in H2OCbl+. The kinetics of the replacement of coordinated H2O by two probe ligand, pyridine and azide, were determined. The rate constants for substitution of H2O in H2O-10-ClCbl+ by pyridine show saturation, whilst those for substitution by N3- do not; this is inconsistent with a purely dissociative mechanism and the reactions proceed through an interchange mechanism. The values of the activation parameters are more positive for the reaction between these ligands and H2OCbl+, than for their reaction with H2O-10-ClCbl+. This is interpreted to mean that the transition state in the reaction of H2O-10-ClCbl+ occurs earlier along the reaction coordinate. In the temperature range studied, H2O-10-ClCbl+ reacts more slowly with py and N3- than does H2OCbl+. SEMO calculations indicate that as the Co-O bond to the departing H(2)O molecule is stretched, the charge density on Co in H2OCbl+ is always lower than on Co in H2O-10-ClCbl+. This suggests that the former is a better electrophile towards the incoming ligand, and offers an explanation for the kinetics observations.  相似文献   

3.
The structural evolution and bonding of a series of early transition-metal oxide clusters, V(n)O(q) (n = 3-9, q = 0,-1), have been investigated with the aid of previous photoelectron spectroscopy (PES) and theoretical calculations. For each vanadium monoxide cluster, many low-lying isomers are generated using the Saunders "Kick" global minimum stochastic search method. Theoretical electron detachment energies (both vertical and adiabatic) were compared with the experimental measurements to verify the ground states of the vanadium monoxide clusters obtained from the DFT calculations. The results demonstrate that the combination of photoelectron spectroscopy experiments and DFT calculation is not only powerful for obtaining the electronic and atomic structures of size-selected clusters, but also valuable in resolving structurally and energetically close isomers. The second difference energies and adsorption energies as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. The adsorption energies of one O atom on the anionic (6.64 → 8.16 eV) and neutral (6.41 → 8.13 eV) host vanadium clusters are shown to be surprisingly high, suggesting strong capabilities to activate O by structural defects in vanadium oxides.  相似文献   

4.
The stability constants of 5-nitrosalicylic acid (5-NSA) and 5-sulfosalicylic acid (5-SSA) complexes of Sc(III) were determined by potentiomeric pH titration. ML and ML2 type first and second complexes were observed in the solutions of 5-NSA and 5-SSA with Sc(III) at 25 degrees C in I=0.1 M ionic medium. The stability constants of Sc(III)-5NSA and Sc(III)-5SSA systems were also investigated by spectrophotometry to determine the stoichiometries of the complexes formed in the reactions. Our results showed that Sc(III)-5SSA complexes are more stable than the Sc(III)-5NSA complexes in aqueous solutions.  相似文献   

5.
A family of highly stable organometallic Cu(III) complexes with monoanionic triazamacrocyclic ligands (L(i)) with general formula [CuL(i)]+ have been prepared and isolated, and their structural, spectroscopic, and redox properties thoroughly investigated. The HL(i) ligands have been designed in order to understand and quantify the electronic effects exerted by electron donor and electron-withdrawing groups on either the aromatic ring or the central secondary amine or on both. In the solid state the Cu(III) complexes were mainly characterized by single-crystal X-ray diffraction analysis, whereas in solution their structural characterization was mainly based on 1H NMR spectroscopy given the diamagnetic nature of the d(8) square-planar Cu(III) complexes. Cyclic voltammetry together with 1H NMR and UV/Vis spectroscopy have allowed us to quantify the electronic effects exerted by the ligands on the Cu(III) metal center. A theoretical analysis of this family of Cu(III) complexes has also been undertaken by DFT calculations to gain a deeper insight into the electronic structure of these complexes, which has in turn allowed a greater understanding of the nature of the UV/Vis transitions as well as the molecular orbitals involved.  相似文献   

6.
The reactivity of cobalt(II) salts towards H(3)L (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) was studied in different reaction conditions. Accordingly, the interaction of cobalt(II) acetate with H(3)L in methanol gives rise to the discrete complex [Co(III)(2)L(OAc)(2)(OMe)]*1.5H(2)O.MeOH, 1. Reaction of cobalt(II) acetylacetonate with H(3)L in the presence of dicarboxylic acids was also investigated. Thus, when cobalt(II) acetylacetonate and H(3)L are mixed with terephthalic or malonic acid in 4 : 2 : 1 molar ratios, the mixed valent [Co(II/III)(2)L(acac)(p-O(2)CC(6)H(4)CO(2)H)][Co(II/III)(2)L(acac)(OH)]*2H(2)O*2MeOH, 2 and [Co(II/III)(2)L(acac)(O(2)CCH(2)CO(2)H)][Co(II/III)(2)L(acac)(OH)]*7H(2)O, complexes are isolated. Decreasing the pH of the medium, by addition of a second mol of dicarboxylic acid, leads to [Co(II/III)(2)L(O(2)CCH(2)CO(2))(MeOH)]*2MeOH, 4, while the reaction with terephthalic acid does not proceed. 1, 2 and 4 were crystallographically characterised and all the complexes are dinuclear, with hydrogen bonds that expand the initial nodes. The magnetic characterisation, as well as the NMR spectroscopy, indicates a diamagnetic nature for 1, in agreement with the presence of Co(III), showing the aerial oxidation suffered by the cobalt(II) ions. Nevertheless, are paramagnetic. Temperature variable magnetic measurements were recorded for the crystallographically characterised complexes 2 and 4 and these studies confirm the mixed valence Co(II)/Co(III) nature of the compounds. The best fits of the magnetic data give an axial distortion parameter Delta = 628.7 cm(-1) for 2 and 698.8 cm(-1) for 4, and spin-orbit coupling constant lambda = -117.8 cm(-1) for 2 and -107.0 cm(-1) for 4. Therefore, this study shows that the oxidation degree of the initial cobalt(ii) salt by atmospheric oxygen can be controlled according to the pH of the medium.  相似文献   

7.
The rates of formation of penta-ammineglycinecobalt(III) ion from aquopenta-amminecobalt(III) ion and glycine in acidic media have been studied spectrophotometrically at different glycine concentration and different pH in the range of 50–70°C. The ΔH≠ and ΔSz≠ values are 27.6 kcal mole?1 and +5.2 e. u. respectively, and increase in ionic strength causes only a slight acceleration of the rate. The results are consistent with a mechanism involving outer-sphere association between the aquopenta-amminecobalt(III) complex and glycine, followed by its transformation into the product by an essentially dissociative process in which rupture of the Co(III)? OH2 bond is primarily important in the transition state (SN1IP mechanism).  相似文献   

8.
Fluorescent gold nanoclusters (Au-NCs) were synthesized by a one-pot method using 11-mercaptoundecanoic acid as a reducing and capping reagent. It is found that the red fluorescence of the Au-NCs is quenched by the introduction of Eu(III) at pH 7.0, but that fluorescence is restored on addition of phosphate. The Au-NCs were investigated by transmission electron microscopy and fluorescence photographs. The effect of pH on fluorescence was studied in the range from pH 6 to 10 and is found to be strong. Based on these findings, we have developed an assay for phosphate. Ions such as citrate, Fe(CN)6 3?, SO4 2?, S2O8 2?, Cl?, HS?, Br?, AcO?, NO2 ?, SCN?, ClO4 ?, HCO3 ?, NO3 ?, Cd2+, Ba2+, Zn2+, Mg2+, and glutamate do not interfere, but ascorbate and Fe3+ can quench Au-NCs fluorescence. The fluorescent nanocluster probe responds to phosphate in the range from 0.18 to 250 μM, and the detection limit is 180 nM. The probe also responds to pyrophosphate and ATP. Figure
Off/on fluorescence sensor for phosphate based on Eu3+-modulated Au NCs thanks to the competition of oxygen-donor atoms from phosphate with those from the carboxylate groups was developed  相似文献   

9.
10.
A typical superoxo complex [Co(CN)5O2][Ph3PN
PPh3]3 combines with stable phenoxy radicals in CH2Cl2 leading to selective formation of peroxy-p-quinols except for 2,4,6-tri-t-butylphenoxy radical, representing radical reactivity of the complex.  相似文献   

11.
Ding  Shou-Nian  Li  Chun-Mei  Gao  Bu-Hong  Kargbo  Osman  Wan  Neng  Chen  Xi  Zhou  Chan 《Mikrochimica acta》2014,181(15):1957-1963

Fluorescent gold nanoclusters (Au-NCs) were synthesized by a one-pot method using 11-mercaptoundecanoic acid as a reducing and capping reagent. It is found that the red fluorescence of the Au-NCs is quenched by the introduction of Eu(III) at pH 7.0, but that fluorescence is restored on addition of phosphate. The Au-NCs were investigated by transmission electron microscopy and fluorescence photographs. The effect of pH on fluorescence was studied in the range from pH 6 to 10 and is found to be strong. Based on these findings, we have developed an assay for phosphate. Ions such as citrate, Fe(CN)6 3−, SO4 2−, S2O8 2−, Cl, HS, Br, AcO, NO2 , SCN, ClO4 , HCO3 , NO3 , Cd2+, Ba2+, Zn2+, Mg2+, and glutamate do not interfere, but ascorbate and Fe3+ can quench Au-NCs fluorescence. The fluorescent nanocluster probe responds to phosphate in the range from 0.18 to 250 μM, and the detection limit is 180 nM. The probe also responds to pyrophosphate and ATP.

Off/on fluorescence sensor for phosphate based on Eu3+-modulated Au NCs thanks to the competition of oxygen-donor atoms from phosphate with those from the carboxylate groups was developed

  相似文献   

12.
Photoelectron spectroscopy (PES) is combined with theoretical calculations to investigate the electronic and atomic structures of three doped aluminum clusters, MAl12- (M=Li, Cu, and Au). Well-resolved PES spectra have been obtained at two detachment photon energies, 266 nm (4.661 eV) and 193 nm (6.424 eV). Basin-hopping global optimization method in combination with density-functional theory calculations has been used for the structural searches. Good agreement between the measured PES spectra and theoretical simulations helps to identify the global minimum structures. It is found that LiAl12- (C(5nu)) can be viewed as replacing a surface Al atom by Li on an icosahedral Al13-, whereas Cu prefers the central site to form the encapsulated D3d-Cu@Al12-. For AuAl12- (C1), Au also prefers the central site, but severely distorts the Al12 cage due to its large size.  相似文献   

13.
Structural and electronic properties of silver hydride cluster anions (Ag(n)H(-); n = 1-3) have been explored by combining the negative ion photoelectron imaging spectroscopy and theoretical calculations. The photoelectron spectrum of AgH(-) exhibits transitions from AgH(- 2)Σ(+) to AgH (1)Σ(+) and AgH (3)Σ(+), with the electron affinity (EA) 0.57(3) eV. For Ag(2)H(-), the only observed transition is from Ag(2)H(-) (C(∞v)) (1)Σ(+) to Ag(2)H (C(2v)) (2)A(') and the electron affinity is 2.56(5) eV. Two obvious electron bands are observed in photoelectron imaging of Ag(3)H(-), which are assigned to the transitions from Ag(3)H(-) (C(2v)-T, which means C(2v) geometry with top site hydrogen) (2)B(2) to Ag(3)H (C(2v)-T) (1)A(1) and Ag(3)H (C(2v)-T) (3)B(2). The electron affinity is determined to be 1.61(9) eV. The Ag-H stretching modes in the ground states of AgH and Ag(2)H are experimentally resolved and their frequencies are measured to be 1710(80) and 1650(100) cm(-1), respectively. Aside from the above EAs and the vibrational frequencies, the vertical detachment energies to all ground states and some excited states of Ag(n)H (n = 1-3) are also obtained. Theoretical calculations reproduce the experimental energies quite well, and the results are used to assign the geometries and electronic states for all related species.  相似文献   

14.
15.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

16.
17.
Important structural and mechanistic details concerning the non-heme, low-spin Fe(III) center in nitrile hydratase (NHase) remain poorly understood. We now report projection unrestricted Hartree-Fock (PUHF) calculations on the spin preferences of a series of inorganic complexes in which Fe(III) is coordinated by a mixed set of N/S ligands. Given that many of these compounds have been prepared as models of the NHase metal center, this study has allowed us to evaluate this computational approach as a tool for future calculations on the electronic structure of the NHase Fe(III) center itself. When used in combination with the INDO/S semiempirical model, the PUHF method correctly predicts the experimentally observed spin state for 12 of the 13 Fe(III)-containing complexes studied here. The one compound for which there is disagreement between our theoretical calculations and experimental observation exhibits temperature-dependent spin behavior. In this case, the failure of the PUHF-INDO/S approach may be associated with differences between the structure of the Fe(III) complex present under the conditions used to measure the spin preference and that observed by X-ray crystallography. A preliminary analysis of the role of the N/S ligands and coordination geometry in defining the Fe(III) spin preferences in these complexes has also been undertaken by computing the electronic properties of the lowest energy Fe(III) spin states. While any detailed interpretation of our results is constrained both by the limited set of well-characterized Fe(III) complexes used in this study and by the complicated dependence of Fe(III) spin preference upon metal-ligand interactions and coordination geometry, these PUHF-INDO/S calculations support the hypothesis that the deprotonated amide nitrogens coordinating the metal stabilize the low-spin Fe(III) ground state seen in NHase. Strong evidence that the sulfur ligands exclusively define the Fe(III) spin state preference by forming metal-ligand bonds with significant covalent character is not provided by these computational studies. This might, however, reflect limitations in modeling these systems at the INDO/S level of theory.  相似文献   

18.
The average magnetic susceptibility (1.2-100 K) and magnetisation (100–15000 Oe at 4.2 K) of two perchlorato manganese(III) porphyrins establish them to be high-spin, in contrast to the “anomalous” behaviour of analogous iron(III) porphyrins. An explanation of the origin of the zero-field splitting in high-spin manganese(III) porphyrins is presented.  相似文献   

19.
Reactions of the oxidation of bivalent cobalt ions by ozone, of the spontaneous decomposition of trivalent cobalt, and of interactions between Co(III) and chloride ions in solutions of sulfuric acid are studied. The order and rate constant of the process of decomposition of Co(III) are determined. Information on the kinetics of the interaction between Co(III) and Cl is obtained. Kinetic patterns of the accumulation of Co(III) during the ozonation of solutions of CoSO4 in sulfuric acid are explained. Molar absorption coefficients of Co(III) and Co2+ ions in the visible range of wavelengths are determined.  相似文献   

20.
The [Os(III)(CN)6]3- anion is prepared by chemical oxidation in aqueous solution and isolated as yellow prisms of [Ph4P]3[Os(III)(CN)6].6H2O (1). This species crystallizes in the triclinic space group P with cell parameters a = 13.7609(11) A, b = 16.2275(13) A, c = 17.0895(14) A, alpha = 91.4040(10) degrees , beta = 109.3600(10) degrees , gamma = 102.3970(10) degrees , V = 3497.4(5) A(3), and Z = 2. The slightly distorted octahedral moiety displays Os-C and C-N bond lengths that average 2.058 and 1.146 A, respectively. Spin-orbit-coupling splitting of the ground-state term dominates the NIR region of the electronic spectrum and the magnetic behavior of 1. The experimental information points to higher spin delocalization over the coordinated cyanides than in [Fe(III)(CN)6]3-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号