首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
2.
The proton affinities of seven different ketones, vicinal diketones, and α-keto esters (acetophenone, 2,2,2-trifluoroacetophenone, 2,3-butanedione, 1-phenyl-1,2-propanedione, methyl pyruvate, ethyl benzoylformate, and ketopantolactone) have been evaluated theoretically using the conventional ab initio HF and several post-HF methods (MP2, MP4, CCSD), density functional methods with the B3LYP hybrid functional, as well as some ab initio model chemistries [CBS-4M, G2(MP2), and G3(MP2)//B3LYP]. The chemical compounds studied are frequently used substrates in the asymmetric hydrogenation over chirally modified platinum catalysts where the protonation properties of the chiral modifier and the substrates are of great interest. In most cases, the proton affinities (PAs) evaluated with the CCSD/6-311+G(d,p)//B3LYP/TZVP and G2(MP2) methods are in good agreement with the existing experimental ones. However, the previously reported PA of 2,3-butanedione seems to be too high by 10-15 kJ mol−1. The B3LYP/TZVP//B3LYP/TZVP and MP2/6-311+G(d,p)//B3LYP/TZVP model chemistries predict proton affinities that are systematically higher and lower than the experimental PAs, respectively. If proton affinities are evaluated as the average of the PAs calculated with these two theoretical methods a very good agreement with the experimental results is obtained. The mean absolute deviation (MAD) from experiment of this combination method for the PAs of 13 test molecules is 4.0 kJ mol−1. For 9 molecules composed only of first-row atoms the MAD is 2.5 kJ mol−1. The B3LYP/TZVP//B3LYP/TZVP and MP2/6-311+G(d,p)//B3LYP/TZVP methods provide significant savings in computational time and disk space compared to the CCSD/6-311+G(d,p)//B3LYP/TZVP and G2(MP2) models. Therefore, it is suggested that if no experimental or highly accurate theoretical data is available (due to computational cost), the proton affinities of similar compounds as investigated in this paper, can be evaluated with the combination method. For the studied molecules, this method gives the following PAs (in kJ mol−1): 788 (2,3-butanedione, exptl 802); 798 (2,2,2-trifluoroacetophenone, exptl 799); 811 (ketopantolactone); 813 (methyl pyruvate); 825 (1-phenyl-1,2-propanedione); 862 (acetophenone, exptl 861); 865 (ethyl benzoylformate).  相似文献   

3.
The (13)C NMR chemical shifts for alpha-D-lyxofuranose, alpha-D-lyxopyranose (1)C(4), alpha-D-lyxopyranose (4)C(1), alpha-D-glucopyranose (4)C(1), and alpha-D-glucofuranose have been studied at ab initio and density-functional theory levels using TZVP quality basis set. The methods were tested by calculating the nuclear magnetic shieldings for tetramethylsilane (TMS) at different levels of theory using large basis sets. Test calculations on the monosaccharides showed B3LYP(TZVP) and BP86(TZVP) to be cost-efficient levels of theory for calculation of NMR chemical shifts of carbohydrates. The accuracy of the molecular structures and chemical shifts calculated at the B3LYP(TZVP) level is comparable to those obtained at the MP2(TZVP) level. Solvent effects were considered by surrounding the saccharides by water molecules and also by employing a continuum solvent model. None of the applied methods to consider solvent effects was successful. The B3LYP(TZVP) and MP2(TZVP)(13)C NMR chemical shift calculations yielded without solvent and rovibrational corrections an average deviation of 5.4 ppm and 5.0 ppm between calculated and measured shifts. A closer agreement between calculated and measured chemical shifts can be obtained by using a reference compound that is structurally reminiscent of saccharides such as neat methanol. An accurate shielding reference for carbohydrates can be constructed by adding an empirical constant shift to the calculated chemical shifts, deduced from comparisons of B3LYP(TZVP) or BP86(TZVP) and measured chemical shifts of monosaccharides. The systematic deviation of about 3 ppm for O(1)H chemical shifts can be designed to hydrogen bonding, whereas solvent effects on the (1)H NMR chemical shifts of C(1)H were found to be small. At the B3LYP(TZVP) level, the barrier for the torsional motion of the hydroxyl group at C(6) in alpha-D-glucofuranose was calculated to 7.5 kcal mol(-1). The torsional displacement was found to introduce large changes of up to 10 ppm to the (13)C NMR chemical shifts yielding uncertainties of about +/-2 ppm in the chemical shifts.  相似文献   

4.
Computational investigations into the ground and singlet excited-state structures and the experimental ground-state absorption spectra of N-confused tetraphenylporphyrin tautomers 1e and 1i and N-confused porphines (NCP) 2e and 2i have been performed. Structural data for the ground state, performed at the B3LYP/6-31G(d), B3LYP/6-31+G(d)//B3LYP/6-31G(d), and B3LYP/6-311+G(d)//B3LYP/6-31G(d) levels, are consistent with those performed at lower levels of theory. Calculations of the gas-phase, ground-state absorption spectrum are qualitatively consistent with condensed phase experiments for predicting the relative intensities of the Q(0,0) and Soret bands. Inclusion of implicit solvation in the calculations substantially improves the correlation of the energy of the Soret band with experiment for both tautomers (1e, 435 nm predicted, 442 nm observed in DMAc; 1i, 435 nm predicted, 437 nm observed in CH2Cl2). The x- and y-polarized Q-band transitions were qualitatively reproduced for 1e in both the gas phase and with solvation, although the low-energy absorption band in 1i was predicted at substantially higher energy (646 nm in the gas phase and 655 nm with solvation) than observed experimentally (724 nm in CH2Cl2). Franck-Condon state and equilibrated singlet excited-state geometries were calculated for unsubstituted NCP tautomers 2e and 2i at the TD-B3LYP/SVP and TD-B3LYP/TZVP//TD-B3LYP/SVP levels. Electronic difference density plots were calculated from these geometries, thereby indicating the change of electron density in the singlet excited states. Adiabatic S1 and S2 geometries of these compounds were also calculated at the TD-B3LYP/SVP level, and the results indicate that while 2i is a more stable ground-state molecule by approximately 7.0 kcal mol-1, the energy difference for the S1 excited states is only approximately 1.0 kcal mol-1 and is 6.1 kcal mol-1 for the S2 excited states.  相似文献   

5.
We report infrared and electronic absorption spectra of mono, di, tri and tetra ethylene glycol (EG) in gas phase, their cation and anion and in water solvent using density functional theory calculations at B3LYP/TZVP level. Structural paramaters, rotational and centrifugal distortional constants and dipole moments are also reported. A siginificant shifts in vibrational frequencies and peaks in electronic absorption spectra have been observed upon ionization of mono, di, tri and tetra ethylene glycols. We have also obtained experimental vibrational spectrum of monoethylene glycol. Vibrational frequencies of mono ethylene glycol from theory and experiment are compared. We have used integral equation formalism polarizable continuum model (IEFPCM) model to study the influence of water solvent on vibrational frequencies of neutral mono, di, tri and tetra ethylene glycol. Electronic absorption spectra for these molecules have been obtained using Time dependent density functional theory (TDDFT).  相似文献   

6.

The molecular structure, conformational equilibria, vibrational spectra and molecular force field of 1-methyl-2-(2′-pyridyl)benzimidazole have been determined at the HF, MP2 and DFT/(B3LYP, BVP86) levels with 6-31+G(d,p) and TZVP basis sets. The torsional potentials for the rotation around the C1–C2 pivotal bond have been calculated at the B3LYP/6-31+G(d,p) and BVP86/TZVP levels of theory for gaseous and aqueous 1-methyl-2-(2′-pyridyl)benzimidazole. FT-Raman (3500–10 cm?1) and FT-IR (3900–400 cm?1) spectra of solid 1-methyl-2-(2′-pyridyl)benzimidazole have been recorded and interpreted on a base of calculated potential energy distribution. The results of the experimental and theoretical study of vibrational spectra and molecular structure of 1-methyl 2-(2′-pyridyl)benzimidazole are considered in comparison with similar data for 2-(2′-pyridyl)benzimidazole.

  相似文献   

7.
In the present work, three novel phenols (10a,11‐dihydro‐4bH‐indeno[1,2‐b]quinolin‐4‐ol ( 1 ), 5,6‐dihydro‐benzo[c]acridin‐1‐ol ( 2 ), and 5,5,7,7a‐tetrahydro‐4aH‐13‐aza‐benzo[3,4]cyclohepta[1,2‐b]naphthalene‐1‐ol ( 3 )) have been explored theoretically in detail. Using density functional theory (DFT) and time‐dependent DFT (TDDFT) methods, we inquire into the intramolecular hydrogen‐bonding interactions and the excited‐state intramolecular proton transfer (ESIPT) process. Exploring the steady‐state absorption and emission spectra under TDDFT/B3LYP/TZVP theoretical level in acetonitrile solvent, our calculated results demonstrate an experimental phenomenon. Based on analysis of the variations of geometrical parameters and infrared (IR) vibrational spectra, we confirm that O–H?N should be strengthened in the S1 state. Investigating the frontier molecular orbitals (MOs) and the charge density difference (CDD) maps, it can be confirmed that the charge redistribution facilitates the tendency of the ESIPT process for 1 , 2, and 3 systems. By constructing potential energy curves, we confirm that the proton transfer should occur in the S1 state. In particular, the ESIPT for 2 and 3 systems are nonbarrier processes in the S1 state, which confirms that ESIPT should be exothermal spontaneously. This work explains previous experimental results and makes a reasonable assumption about the ESIPT mechanism for 1 , 2 and 3 systems. We sincerely hope our work can facilitate understanding and promoting applications about them in future.  相似文献   

8.
In a previous paper (Hermosilla, L.; Calle, P.; Garcia de la Vega, J. M.; Sieiro, C. J. Phys. Chem. A 2005, 109, 1114), an adequate computational protocol for the calculation of isotropic hyperfine coupling constants (hfcc's) was proposed. The main conclusion concerns the reliability of the scheme B3LYP/TZVP//B3LYP/6-31G* in the predictions of hfcc's with low computational cost. In the present study, we gain insight into the behavior of the above functional/basis set scheme on nuclei of the third row, for which few systematic studies have been carried out up to the present date. The systems studied are neutral, cationic, anionic, localized, and conjugated radicals, containing (29)Si, (31)P, and (33)S nuclei. After carrying out a regression analysis, we conclude that density functional theory (DFT) predictions on the hfcc's of the third-row nuclei are reliable for B3LYP/TZVP by using an optimized geometry with B3LYP/6-31G* combination. By comparison with other much more computationally demanding schemes, namely, B3LYP/cc-pVTZ and B3LYP/cc-pVQZ, we conclude that the B3LYP functional in conjunction with the TZVP basis set is the most useful computational protocol for the assignment of experimental hfcc's, not only for nuclei of first and second rows, but also for those of the third row.  相似文献   

9.
Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy was applied in the analysis of vibrational and low lying electronic transitions of a triplet ground state cobalt(III) coordination compound. The spectroscopic measurements were performed on the tetrabutylammonium salt of (6S,7S)-1,3,5,8,10,12-hexaaza-2,4,9,11-tetraoxo-6,7-diphenyl-dodecanato(4-)cobaltate(III) in DMSO solution and in potassium bromide pellets. The chiral anion exhibits an unusual geometry for cobalt(III), being four-coordinate, planar, and paramagnetic with an intermediate spin state. The spectroscopic results were compared to measurements performed on the free ligand and to theoretical calculations using density functional theory (B3LYP/TZVP). The results of the VCD analysis of the coordination compound identified an electronic, dipole-forbidden, magnetic dipole-allowed low-lying d-d transition located in the mid infrared, as well as several amide stretch transitions located in the fingerprint region (1800-1100 cm(-1)), in both the liquid and solid phase. VCD signals were found to be 5-10 times higher than expected, indicating enhancement of the vibrational CD signals, caused by coupling of the vibrational transitions with the close-lying electronic transition.  相似文献   

10.
Multireference complete active space self-consistent-field CASSCF(10,12)/ANO and second-order perturbation theory MS-CASPT2 calculations were performed to determine the vertical low-lying singlet and triplet states of aniline. The sequence of the seven lower lying triplet states is T1(1(3)A'), T2(1(3)A' '), T3(2(3)A'), T4(3(3)A'), T5(2(3)A' '), T6(4(3)A'), and T7(3(3)A' '). The 3(3)A', 4(3)A', and 3(3)A' ' states are assigned as 3s, 3py, and 3pz Rydberg states, respectively, while other states correspond to pi <-- pi excitations. Both the T1 and T2 states are found to be below at the lowest-lying singlet S1 (1(1)A' ') state. Geometry, vibrational modes, and electron distribution of the lowest lying T1 state were determined using UB3LYP calculations. The vertical and adiabatic singlet-triplet energy gaps DeltaE(S0-T1) amount to 3.7 and 3.5 +/- 0.2 eV, respectively. In clear contrast with the S0 state, the triplet aniline is no longer aromatic, and its protonation occurs preferentially at the ring meta-carbon site, with a proton affinity PA = 243 +/- 3 kcal/mol.  相似文献   

11.
The possible reaction mechanisms of FeST(6∑+and 4Ф states)with COS in the gas phase have been studied by using density functional theory at the B3LYP/TZVP and B3LYP/6-311+G*levels:the O/S exchange reaction(FeS++COS=FeO++CS2),O-transfer reaction(FeS++COS=FeSO++CS)and S-transfer reaction(FeS++COS=FeS2++CO).The calculation results show that the large barriers(205.7 and 310.1 kJ/mol)and the small probability of forming the preceding intermediate indicate a much lower efficiency of the O/S exchange and the O-transfer reactions and their corresponding products may not be observed experimentally.FeS2+,the product of S-transfer reaction,is predicted to be the main product.But the reactivity of the 6∑+ground state of FeS+toward COS is lower than the earlier transition metal sulfide cations MS+(M=Sc,Ti and V),although it has more reaction channels and different mechanisms.  相似文献   

12.
The sensitivity of vibronic calculations to electronic structure methods and basis sets is explored and compared to accurate relative intensities of the vibrational bands of phenylacetylene in the S(1)(A(1)B(2)) ← S(0)(X(1)A(1)) transition. To provide a better measure of vibrational band intensities, the spectrum was recorded by cavity ringdown absorption spectroscopy up to energies of 2000 cm(-1) above the band origin in a slit jet sample. The sample rotational temperature was estimated to be about 30 K, but the vibrational temperature was higher, permitting the assignment of many vibrational hot bands. The vibronic structure of the electronic transition was simulated using a combination of time-dependent density functional theory (TD-DFT) electronic structure codes, Franck-Condon integral calculations, and a second-order vibronic model developed previously [Johnson, P. M.; Xu, H. F.; Sears, T. J. J. Chem. Phys. 2006, 125, 164331]. The density functional theory (DFT) functionals B3LYP, CAM-B3LYP, and LC-BLYP were explored. The long-range-corrected functionals, CAM-B3LYP and LC-BLYP, produced better values for the equilibrium geometry transition moment, but overemphasized the vibronic coupling for some normal modes, while B3LYP provided better-balanced vibronic coupling but a poor equilibrium transition moment. Enlarging the basis set made very little difference. The cavity ringdown measurements show that earlier intensities derived from resonance-enhanced multiphoton ionization (REMPI) spectra have relative intensity errors.  相似文献   

13.
吴玉辉  周欣  张红星 《化学学报》2009,67(3):197-202
采用自旋限制和非限制B3LYP/UB3LYP方法分别优化了系列Os(II)二亚胺配合物[Os(L)2(CN)2(phen)] [phen=1,10-邻二氮杂菲; L=Ph3 (1), 二甲基亚砜(DMSO) (2)]及[Os(PH3)2(phen)Br2] (3)的基态和激发态几何构型. 通过TD-DFT方法结合PCM溶剂化模型计算了配合物1~3在二氯甲烷溶液中的吸收和发射光谱并指认了相应的跃迁性质. 通过理论化学计算, 揭示了π酸配体及π碱配体对配合物磷光发射性质的影响及原因. 并进一步解释了配合物3易于在Os—Br键处断裂而发生反应的量子化学机理. 对配合物在不同溶剂中的磷光发射性质的计算表明, 溶剂对配合物的量子产率存在着影响并且配合物具有溶剂化显色效应.  相似文献   

14.
For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine·H(2)O monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift δν of the S(1) ← S(0) transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (δν = -889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H(2)O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D(e) = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)ππ* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S(0) state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)ππ* state to the lower-lying (1)nπ* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)ππ* state of B is planar and decoupled from the (1)nπ* state. These observations agree with the calculations, which predict the (1)nπ* above the (1)ππ* state for isomer B but below the (1)ππ* for both 9H-2AP and isomer A.  相似文献   

15.
The structural and vibrational properties of the transition state of the N(2)O + X (X = Cl,Br) reactions have been characterized by ab initio methods using density functional theory. We have employed Becke's hybrid functional (B3LYP), and transition state optimizations were performed with 6-31G(d), 6-311G(2d,2p), 6-311+G(3d,2p), and 6-311+G(3df,2p) basis sets. For the chlorine atom reaction the coupled-cluster method (CCSD(T)) with 6-31G(d) basis set was also used. All calculations resulted in transition state structures with a planar cis arrangement of atoms for both reactions. The geometrical parameters of transition states at B3LYP are very similar, and the reaction coordinates involve mainly the breaking of the N-O bond. At CCSD(T)/6-31G(d) level a contribution of the O-Cl forming bond is also observed in the reaction coordinate. In addition, several highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction energetics. All model chemistries predict exothermic reactions. The G3 and G2 methods result in the smallest deviations from experiment, 1.8 and 0 kcal mol(-1), for the enthalpies of reaction for N(2)O reaction with chlorine and bromine, respectively. The G3//B3LYP and G1 methods perform best among the composite methods in predicting energies of the transition state, with a deviation of 1.9 and 3.0 kcal mol(-1), respectively, in the activation energies for the above processes. However, the B3LYP/6-311+G(3df,2p) method gives smaller deviations of 0.4 and -1.0 kcal mol(-1), respectively. The performance of the methodologies applied in predicting transition state energies was analyzed.  相似文献   

16.
李明  申伟  唐典勇 《化学学报》2003,61(8):1251-1255
用量子化学密度泛函理论(DFT)和G3B3方法,对为(~1D)与CF_2HCl的反应 进行了研究,在B3LYP/6-311+G(d),B3LYP/6-311+G(2df,2pd)和G3B3计算水平上, 优化了反应热能面上各驻点的几何结构,通过内禀反应坐标(IRC)计算和振动分 析,对反应过渡态进行了确认,并确定了反应机理。  相似文献   

17.
1H‐NMR Chemical shifts of all‐syn‐1,2,4,5‐tetrafluorocyclohexane ( 1 ), all‐syn‐1,2,3,4‐tetrafluorocyclohexane ( 2 ), and their complexes with benzene are calculated at the BHandH/6‐311+G(2d,p) level. The observed shielding of certain resonances on going from CD2Cl2 to (D8)toluene solution is qualitatively reproduced in these model calculations, in particular when standard B3LYP/def2‐TZVP optimised geometries are employed. The results are interpreted with the quantum theory of atoms in molecules (QTAIM) and non‐covalent interactions (NCI) methods, and they indicate that aromatic molecules bind strongly (1.6 kcal mol?1) to the ‘positive face’ of these molecules. The level of theory is validated for the new compound all‐syn‐1,2,4,5‐tetrafluoro‐3‐phenylcyclohexane ( 3 ), where a recently developed QM/MM protocol for optimisation of molecular crystals afforded excellent agreement between the B3LYP/def2‐TZVP structure and that observed in the solid.  相似文献   

18.
The relative stabilities of the five favored tautomers of 2‐ and 4‐thiouracil in gas phase and in water solution were determined by density functional theory employing the Becke, Lee, Yang, and Parr (B3LYP) exchange–correlation potential and the three 6‐31G(d,p), 6‐311++G(d,p), and triple‐zeta valence (TZVP) basis sets. Zero‐point vibrational corrections were also computed. Bulk solvent effects were studied in the framework of the self‐consistent reaction field approach by the polarizable continuum model. All calculations indicate that the most stable tautomer for both species, in the gas phase as well as in solution, has the oxo‐thione form, in full agreement with the previous ab initio and experimental studies. The tautomeric stability orders obtained in the aqueous solution are sensibly different from that in the gas phase. At B3LYP/6‐311++G(d,p) level in the gas phase, the following orders of stability for 2‐ and 4‐thiouracil tautomers were observed, respectively: S2U1>S2U2>S2U4>S2U5>S2U3 and S4U1>S4U2>S4U3>S4U4>S4U5. The corresponding trends in the aqueous phase are S2U1>S2U3>S2U2>S2U5>S2U4 and S4U1>S4U2>S4U3>S4U5>S4U4. On the basis of the computed energy differences we can hypothesize that only the oxo‐thione forms of 2‐ and 4‐thiouracil should exist in the gas phase and in water solution. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 44–52, 2001  相似文献   

19.
The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.  相似文献   

20.
The molecular geometry and vibrational frequencies of 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-benzimidazole (C(16)H(12)N(2)S(2)) in the ground state has been calculated using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-benzimidazole (C(16)H(12)N(2)S(2)) and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号