首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemistry and thermodynamics of vaporization in a Knudsen effusion cell of the phase ZnGa8S13 was studied in the range 1115–1246 K where the vapor pressure ranged from 0.25 to 10.0 Pa. Samples prepared by sealed-tube methods and characterized by X-ray diffraction were studied by the simultaneous Knudsen and torsion (Volmer) effusion method. ZnGa8S13(s) effused incongruently in equilibrium with a saturated solid solution (sss) of ZnS in Ga2S3, Ga2S(g), Zn(g), and S2(g), always on the ZnSGa2S3 join. Ga2S3(sss) then effused with net loss of ZnS to the vapor until the composition of Ga2S3 was reached. Vapor analysis by combining measured rates of mass loss and momentum loss allowed analysis of the vapor and calculation of equilibrium constants of the effusion equations. Thermodynamic treatment by the third-law method yielded the ΔH° (298 K) of ZnGa8S13(s) with respect to those of ZnS(s) and 4Ga2S3(s), − 52 ± 22 kJ mol − 1.  相似文献   

2.
The enthalpy of formation at 298.15 K of the polymer Al13O4(OH)28(H2O)3+8 and an amorphous aluminium trihydroxide gel was studied using an original differential calorimetric method, already developed for adsorption experiments, and aluminium-27 NMR spectroscopy data. ΔHf “Al13” (298.15 K) = ? 602 ± 60.2 kJ mole?1 and ΔHf Al(OH)3 (298.15 K) = ? 51 ± 5 kJ mole?1. Using theoretical values of ΔGR “Al13” and ΔGR Al(OH)3, we calculated ΔGf “Al13” (298.15 K) = ? 13282 kJ mole?1; ΔSf “Al13” (298.15 K) = + 42.2 kJ mole?1; ΔGf Al(OH)3 (298.15 K) = ? 782.5 kJ mole?1; and ΔSf Al(OH)3 (298.15 K) = + 2.4 kJ mole?1.  相似文献   

3.
Knudsen effusion studies of the sublimation of polycrystalline SnS, prepared by annealing and chemical vapor transport, have been performed employing vacuum micro-balance techniques in the temperature range 733–944 K and at pressures ranging from about 6 × 10?3 to 11 Pa.The third-law heats of sublimation and second-law entropy of reaction SnS(s) = SnS(g) were determined to be ΔH0298 = 220.4 ± 3.0 kJ mole? and ΔS0298 = 162.4 ± 4.5 J K?1 mole?1. From these data the standard heat of formation and absolute entropy of SnS(s) were calculated to be ?102.9 ± 4.0 kJ mole?1 and 79.9 ± 6.0 J K?1, respectively.  相似文献   

4.
The equilibrium between fluoral in dichloromethane solution and live condensed liquid polyfluoral has been investigated between 22 and 43°C. Equilibrium monomer concentrations gave: ΔHac°(298 K) = -50-8 ± 2·3 kJ mol?1 and ΔSsc° (298 K) = -142·7 ± 7·4 J K-1 mol-1. With the aid of calibration and monomer vaporization data, thermodynamic values for the polymerization of liquid monomer to liquid polymer were also calculated: ΔHtc° (298 K) = -47 ± 3 kJ mol-1 and ΔS1e° (298 K) = -97 ± 10 J K-1 mol-1.  相似文献   

5.
The enthalpies of formation of two hydrogen tungsten bronze phases H0.35WO3 and H0.18WO3 have been determined by solution calorimetry. Values obtained for formation from H2(g) and WO3(s) at 298.15 K were H0.35WO3(s), ?9.6 ± 0.8 kJ mole?1 and H0.18WO3(s), ?4.8 ± 0.6 kJ mole?1. The stabilities of these phases towards decomposition, disproportionation and oxidation are discussed.  相似文献   

6.
Vapor pressures of solid antimony tribromide were measured by the torsion—effusion technique. The values obtained can be expressed by the equation log P(atm) = (9.3 ± 1.3) ? (4.4 ± 0.5)/T in the temperature range 324–368 K.The standard heat of vaporization was derived by second- and third-law treatment of the data and compared with values reported in the literature. The value ΔH0vap (298 K) = 19.5 ± 0.5 kcal mole?1 was derived.  相似文献   

7.
Using three different techniques, the vapour pressure of α-iodonaphthalene was measured in the temperature range 322–422 K. The pressure equation log P(kPa) = 8.82 ± 0.29 ? (3719 ± 300) /T, was determined. The enthalpy of vaporization change, ΔH0298 = 69.4 ± 4.0 kJ mole?1, was determined as the average of the results obtained by second-and third-law treatment of the experimental data. Antoine's constants, A = 6.258, B = 2010 and C = 171, were also derived.  相似文献   

8.
By using different techniques the vapor pressure of ferrocene, mono-acetyl ferrocene and 1,1′-di-acetyl ferrocene was measured. The following pressure—temperature equations were derived ferrocene log P(kPa)= 9.78 ± 0.14 ? (3805 ± 46)/T mono-acetyl ferrocene log P(kPa) = 14.83 ± 0.14 ? (5916 ± 48)/T 1,1′-di-acetyl ferrocene log P(kPa) = 8.82 ± 0.11 ? (4289 ± 44)/T By second- and third-law treatment of the vapor data the ΔH0sub,298 = 74.0 ± 2.0 kJ mole?1 for the sublimation process of ferrocene was calculated and compared with the literature data. For the sublimation enthalpy of mono- and 1,1′-di-acetyl ferrocene the values ΔH0sub,298 = 115.6 ± 2.5 kJ mole?1 and ΔH0sub,298 = 91.9 ± 2.5 kJ mole?1 were derived by second-law treatment. Thermal functions of these compounds were also estimated.  相似文献   

9.
The vapor pressures of benzoylferrocene and 1,1′-dibenzoylferrocene were measured by torsion-effusion technique. The following pressure-temperature equations were derived benzoylferrocene log P(kPa) = 10.75±0.22?(5314±82)/T 1,1′-dibenzoylferrocene log P(kPa) = 9.29±0.24?(4898±91 )/T Second-law treatment of the experimental data yielded the sublimation enthalpies for benzoylferrocene and 1,1′-dibenzoylferrocene: ΔH0sub,298 = 116.3±6.0 kJ mole?1 and ΔH0sub,298 = 109.3±6.0 kJ mole?1 respectively. Thermal functions of these compounds were also estimated.  相似文献   

10.
Vapour pressure measurements have been carried out on the complexes W(CO)it6-x (NCCH3x(x=1,2,3) and Mo(CO)it6-x(NCCH3x(x=1,3) employing the Knudsen effusion technique. The following enthalpies of sublimation, ΔH298sub(kJ mole?1), have been determined from vapour pressure data: W(CO)5(NCCH3)=98.1±2.0; W(CO) 4 (NCCH3)2=131.0±6.0; W(CO)3(NCCH33=103.4±6.0; Mo(CO)5(NCCH3)=105.8± 5.6; and Mo(CO)3(NCCH3)3=111.3±3.0.  相似文献   

11.
The rate constant for the unusually rapid HD exchange reaction of D2 with HBF2 : D2(g) + HBF2(g) → DBF2(g) + HD(g) has been measured (k2(298K) = (7.42 ± 2.0) × 10?23 cm3/molecule s). The activation energy for this reaction has been estimated to be 17.8 ± 1.2 kcal/mole. The mechanism probably involves a multicenter orbital interaction between D2 and HBF2.  相似文献   

12.
Iridium hexafluoride oxidizes ReF6 (via an ReF6+ salt) and at room temperatures IrF6, ReF6, ReF7 and (IrF5)4 are each present in the equilibrium mixture. From these and related findings: ΔH°(ReF6 → ReF6+ + e?) 1092 ± 27 kj mole?1(261 ± 6 kcal mole?1), and thermodynamic data are selected to yield ΔH°(ReF7(g) → ReF6+(g) + F?(g))=893 ± 33 kj mole?1(213 ± 8 kcal mole?1). From observations on the stability of IF6+BF4? and the lattice enthalpy evaluation for the salt, ΔH°(IF7(g) → IF6+(g) + F?(g))= 870 ± 24 kj mole?1(208 ± 6 kcal mole?1).  相似文献   

13.
The rate constant for the reaction between OH and vibrationally excited H2, OH + H2(ν = 1)→H2O + H, has been measured directly at 298 K. k01 is found to be (7.5±3)×10?13 cm3/molecules, corresponding to a vibrational rate enhancement of k01/k00 = (1.2 ± 0.4) × 102.  相似文献   

14.
The atomization energies, ΔH0at,0 of the molecules, AlAu2 and Al2 and Al2Au have been determined as 121 ± 6 and 110 ± 5 kcal mole?1 or 506.3 ± 25.1 and 460.2 ± 20.9 kJ mole?1, respectively.Theses atomization energies are discussed in terms of bond strengths and the Pauling model of a polar bond. Available information suggests that AlAu2 has the structure AuAlAu, but that Al2Au has the structure AlAlAu. For both molecules divalent gold is shown to be unlikely.  相似文献   

15.
The dimer-monomer reactions were investigated for the system cis and transo,o'-azodioxytoluene-o-nitrosotoluene in acetonitrile solvent. For the reaction cis dimer-monomer the following thermodynamic and activation parameters have been derived: ΔH°=58.5±2.5 kJ mole?1, ΔS°=206.2±3.8 J mole?1 K?1, ΔH=63.6±3.3 kJ mole?1, ΔS=6.3±0.3 J mole?1 K?1. The corresponding values for the reaction trans dimer-monomer are: ΔH°=45.6±2.1 kJ mole?1, ΔS°=162.7±7.1 J mole?1 K?1, ΔH=80.8±2.9 kj mole?1, ΔS=-13.4±0.8 mole?1 K?1. There is no evidence of a direct cis-trans isomerization (i.e. a reaction not proceeding via the monomer). NMR and various perturbation techniques monitoring the visible absorption of the monomer were employed.  相似文献   

16.
Rate constants for the reaction of O(3P) atoms with C3H4, C3H6 and NO(M = N2O) have been measured over the temperature range 300–392°K using a modulation-phase shift technique. The Arrhenius expressions obtained are:C2H4, k2 = 3.37 × 109 exp[?(1270 ± 200)/RT]liter mole?1 sec?1,C3H6, k2 = 2.08 × 109 exp[?(0 ± 300)/RT]liter mole?1 sec?1,NO(M = N2O), k1 = 9.6 × 109 exp[(900 ± 200/RT]liter2 mole?2 sec?1.These temperature dependencies of k2 are in good agreement with recent flash photolysis-resonance flourescence measurements, although lower than previous literature values.  相似文献   

17.
The diffusion coefficient of O*2(1Δg) in O2(3Σ?g) has been measured as a function of pressure, D* = 0.201 ± 0.005 cm2 s?1 at 1 atmosphere and 298 K.  相似文献   

18.
Phase equilibria in the system CuCu2OTiO2 were investigated in the temperature range of 1160–1270 K by means of thermogravimetry and measurements of the oxygen partial pressure. The tie lines on the isothermal phase diagram run from the phase Cu3TiO4 to CuO, Cu2O, and TiO2. The existence of Cu3TiO5 and Cu2TiO3 could not be confirmed in this temperature range. The phase “Cu3TiO4” is only stable above about 1140 K and its composition fluctuates between about Cu3TiO4.3 and Cu3TiO3.9. The formation of Cu3TiO4.3 according to the reaction 1.6 CuO + 0.7 Cu2O + TiO2 = Cu3TiO4.3 is endothermic: (1160 < T < 1270 K) ΔH° = (7600 ± 450 J-mole?1; ΔS° = (6.7 ± 0.4) J·K?1·mole?1. The standard Gibbs free energy, enthalpy, and entropy of formation of Cu3TiO4.3 at 1200 K are ΔG°f = ?101.39 kJ, ΔH°f = ?1115.84 kJ, and S°f = 466.76 J·K?1. Rather similar values were found for Cu3TiO3.9.  相似文献   

19.
The rate constant for the reaction or NH3 + OH → NH2 + H2O has been measured in a high temperature fast flow reactor over the range 294–1075 K k = (5.41 ± 0.86) × 10-12 exp[?(2120 ± 143) cal mole?1/RT cm3 molecule?1 s?1. This result is compared with literature values and discussed.  相似文献   

20.
The vapour pressure of uracil was measured in the temperature range 452–587 K using different techniques and the pressure—temperature equation log P(kPa) = 12.13 ± 0.50 — (6823 ± 210)/T was derived. The thermodynamic functions of gaseous and solid uracil were also evaluated through spectroscopic and calorimetric measurements. The sublimation enthalpy of uracil, ΔH0298 = 131 ± 5 kJ mole?1, was derived from second and third law treatment of the vapour data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号