首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Thermal behavior and decomposition kinetics of Formex-bonded PBXs based on some attractive cyclic nitramines, such as 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). Actually, cis-1,3,4,6-tetranitrooctahy droimidazo-[4,5-d]imidazole (BCHMX) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10, 12-hexaazaisowurtzitane (CL-20), was investigated by means of nonisothermal thermogravimetry (TG) and differential scanning calorimetry (DSC). It was found that the mass loss rate of PBXs involved in this research depends greatly on heating rate and the residue of the decomposition of these PBXs decreases with the heating rate. The onset of the exotherms was noticed at 215.4, 278.7, 231.2 and 233.7 °C with the peak maximum at 235.1, 279.0, 231.2 and 233.7 °C for RDX-Formex, HMX-Formex, CL-20-Formex, and BCHMX-Formex, respectively. Their corresponding exothermic changes were 1788, 1237, 691, and 1583 J g?1. It was also observed that the dependence on the heating rate for onset temperatures of HMX- and BCHMX-based PBXs was almost the same due to their similar molecular structure. In addition, based on nonisothermal TG data, the kinetic parameters for thermal decomposition of these PBXs were calculated by isoconversional methods. It was shown that the Formex base has great effects on the activation energy distribution of nitramines. It was further found that the kinetic compensation effects occurred during the thermal decomposition of nitramine-based PBXs, and they almost have the same compensation effects due to similar decomposition mechanism.  相似文献   

2.
The thermal decomposition of potassium iodate (KIO3) has been studied by both non-isothermal and isothermal thermogravimetry (TG). The non-isothermal simultaneous TG–differential thermal analysis (DTA) of the thermal decomposition of KIO3 was carried out in nitrogen atmosphere at different heating rates. The isothermal decomposition of KIO3 was studied using TG at different temperatures in the range 790–805 K in nitrogen atmosphere. The theoretical and experimental mass loss data are in good agreement for the thermal decomposition of KIO3. The non-isothermal decomposition of KIO3 was subjected to kinetic analyses by model-free approach, which is based on the isoconversional principle. The isothermal decomposition of KIO3 was subjected to both conventional (model fitting) and model-free (isoconversional) methods. It has been observed that the activation energy values obtained from all these methods agree well. Isothermal model fitting analysis shows that the thermal decomposition kinetics of KIO3 can be best described by the contracting cube equation.  相似文献   

3.
The effect of gamma ray irradiation on the rate and kinetics of thermal decomposition of potassium iodate (KIO3) has been studied by thermogravimetry (TG) under non-isothermal conditions at different heating rates (3, 5, 7, and 10 K min?1). The thermal decomposition data were analyzed using isoconversional methods of Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, and Friedman. Irradiation with gamma rays increases the rate of the decomposition and is dependent on the irradiation dose. The activation energy decreases on irradiation. The enhancement of the rate of the thermal decomposition of KIO3 upon irradiation is due to the combined effect of the production of displacements and extended lattice defects and chemical damage in KIO3. Non-isothermal model fitting method of analysis showed that the thermal decomposition of irradiated KIO3 is best described by the contracting sphere model equation, with an activation energy value of ~340 kJ mol?1.  相似文献   

4.
The eutectoid decomposition of intermetallic CuZr under isothermal and nonisothermal conditions was studied by differential scanning calorimetry, electrical resistivity measurements, X-ray diffraction analysis, optical microscopy, and dilatometry. The kinetic diagram of the eutectoid decomposition of intermetallic CuZr was determined for the first time. The rate of the eutectoid decomposition of the CuZr phase was found to be one to two orders of magnitude lower than that in many other copper-based systems. The kinetics of the eutectoid decomposition under isothermal conditions was investigated, and the kinetic parameters of the decomposition were determined (the activation energy Ea = 395 ± 24 kJ/mol and the Avrami constant n = 3.3 ± 0.1).  相似文献   

5.
The thermal stability and kinetics of isothermal decomposition of carbamazepine were studied under isothermal conditions by thermogravimetry (TGA) and differential scanning calorimetry (DSC) at three heating rates. Particularly, transformation of crystal forms occurs at 153.75°C. The activation energy of this thermal decomposition process was calculated from the analysis of TG curves by Flynn-Wall-Ozawa, Doyle, distributed activation energy model, ?atava-?esták and Kissinger methods. There were two different stages of thermal decomposition process. For the first stage, E and logA [s?1] were determined to be 42.51 kJ mol?1 and 3.45, respectively. In the second stage, E and logA [s?1] were 47.75 kJ mol?1 and 3.80. The mechanism of thermal decomposition was Avrami-Erofeev (the reaction order, n = 1/3), with integral form G(α) = [?ln(1 ? α)]1/3 (α = ~0.1–0.8) in the first stage and Avrami-Erofeev (the reaction order, n = 1) with integral form G(α) = ?ln(1 ? α) (α = ~0.9–0.99) in the second stage. Moreover, ΔH , ΔS , ΔG values were 37.84 kJ mol?1, ?192.41 J mol?1 K?1, 146.32 kJ mol?1 and 42.68 kJ mol?1, ?186.41 J mol?1 K?1, 156.26 kJ mol?1 for the first and second stage, respectively.  相似文献   

6.
Summary The decomposition of piperidinium hexathiocyanatochromate(III), (pipH)3[Cr(NCS)6](s), into Cr(NCS)3(s) and pipHSCN(g) has been studied isothermally and nonisothermally using t.g.a. Data from isothermal studies were analysed according to 17 different kinetic models and the (, T) data from nonisothermal experiments were analysed using 12 rate laws by the procedure of Reich and Stivala. It was found that while a first-order rate law gave the best fit to the data obtained from isothermal and nonisothermal experiments most frequently, considerable variation exists for both types of experiments. Using the first order model, the activation energy was found to be 77.2 ±4.4kJ mol–1.  相似文献   

7.
AIBN (2,2′-azobis (isobutyronitrile)), widely used for blowing agent and initiator, is a typical self-reactive material, being capable of undergoing runaway reaction due to its self-heating during storage or transportation. In this study, the thermal decomposition process of AIBN was studied by differential scanning calorimetry at different heating rates. The kinetic parameters including the activation energy and pre-exponential factor at different stages were calculated, and the laws of parameter variation were analyzed using the software, named as Advanced Kinetics and Technology Solutions, which can also predict the thermal stability of decomposition process at actual situations, such as ton and kg scale. The results show that heating rate can influence evidently the thermal behavior of AIBN, which can decompose in liquid phase or in liquid–solid co-existing phase, or, even decomposes in solid phase; according to Friedman method, the value of the calculated activation energy is 122 kJ mol?1; according to Ozawa method, the value decreases gradually with the reaction process, and the smallest one is 124 kJ mol?1. By mg-scale prediction under isothermal condition, it is known that AIBN decomposes at 30 °C (room temperature), very slowly; by ton-scale prediction under adiabatic condition, the safety diagram of AIBN is acquired, which shows how the time to the maximum rate changes with the initial temperature under ideal adiabatic condition (Φ = 1), for example, for TMRad = 24 h, the corresponding mean temperature (i.e., TD24) is 71.23 °C, and for the initial temperature 71.23 °C, the lower and upper limits of the confidence intervals (95 % probability) are 18.5 and 31 h; by kg-scale prediction, it is obtained that the self-accelerating decomposition temperature of 50 kg AIBN with standard package is 63 °C, which is close to that of ARC.  相似文献   

8.
9.
The kinetics of the thermal decomposition of aqueous manganese nitrate solutions and anhydrous manganese nitrate in air were established from isothermal experiments. By heating the solution, first most of the water evaporates to a composition of equimolar amounts of water and manganese nitrate; this concentrated solution then decomposes to γ-Mn(NO2, NO2 and water, usually in two steps. The first step can be described best by the model [?ln(1 ? α)]12 = 8.9 × 1011 exp(?121000/RT)t, whereas the second step is described equally well by several models. The kinetic parameters of these models are quite similar, the average activation energy being 141 kJ mole?1.The decomposition of anhydrous Mn(NO3)2, which proceeds in a single step, can also be described with several similar models. In this case the average activation energy is about 92 kJ mole?1.  相似文献   

10.
TG-DTA-EGA studies have shown that anhydrous uranyl nitrate cannot be obtained by thermal decomposition of uranyl nitrate hexahydrate. Hydrolysis and polymerization of the salt during dehydration resulted in hydroxynitrates which decomposed in multiple steps with the evolution of oxides of nitrogen and water. The extent of hydrolysis dependend on the sample size, heating rate and nature of sample containment. Large samples on decomposition at relatively high heating rates showed evolution of nitric oxide even above 500°C. Infrared studies on the residues prepared at various temperatures supported the conclusions.  相似文献   

11.
The rate and kinetics of the thermal decomposition of potassium iodate (KIO3) has been studied as a function of particle size, in the range 63?C150???m, by isothermal thermogravimetry at different temperatures, 790, 795, 800 and 805?K in nitrogen atmosphere. The theoretical and experimental mass loss data are in good agreement for the thermal decomposition of all samples of KIO3 at all temperatures studied. The isothermal decomposition of all samples of KIO3 was subjected to both model-fitting and model-free (isoconversional) kinetic methods of analysis. It has been observed that the activation energy values are independent of the particle size. Isothermal model-fitting analysis shows that the thermal decomposition kinetics of all the samples of KIO3 studied can be best described by the contracting cube equation.  相似文献   

12.
13.
The thermal decomposition of salbutamol (β2 — selective adrenoreceptor) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). It was observed that the commercial sample showed a different thermal profile than the standard sample caused by the presence of excipients. These compounds increase the thermal stability of the drug. Moreover, higher activation energy was calculated for the pharmaceutical sample, which was estimated by isothermal and non-isothermal methods for the first stage of the thermal decomposition process. For isothermal experiments the average values were E act=130 kJ mol−1 (for standard sample) and E act=252 kJ mol−1 (for pharmaceutical sample) in a dynamic nitrogen atmosphere (50 mL min−1). For non-isothermal method, activation energy was obtained from the plot of log heating rates vs. 1/T in dynamic air atmosphere (50 mL min−1). The calculated values were E act=134 kJ mol−1 (for standard sample) and E act=139 kJ mol−1 (for pharmaceutical sample).  相似文献   

14.
The thermal decomposition of sodium azide has been investigated in the temperature range 240–365°C. Three values for the activation energy, 37.0, 59.0 and 14 kcal mol?1 have been obtained depending on the temperature range of study. The mechanism of decomposition seems to involve excited azide ions (through internal conversion) and excitations. The activation energy of 14 kcal mol?1 appears to be associated with the promotion of electron in the presence of sodium metal.  相似文献   

15.
Non isothermal decomposition of synthetically prepared hydromagnesite phase with two different morphologies (2-D micro sheets and nests) was studied in dynamic nitrogen atmosphere by thermogravimetric analysis, differential thermogravimetric analysis, and differential scanning calorimetric techniques. Two different kinetic models, i.e. the Friedman isoconversion and the Flynn–Wall methods were employed for the analysis of thermal decomposition. The apparent activation energy (E a) of the hydromagnesite phases having 2-D micro sheet and nest morphology were calculated and compared. The activation energy of nest morphology was found to be relatively higher than 2-D micro sheets. The higher activation energy for the relatively close packed ‘nest’ morphology is attributed to the difficulty of thermal transport in the core.  相似文献   

16.
Sodium alkoxides, namely, sodium n-propoxide and sodium iso-propoxide were synthesized and characterized by various analytical techniques. Thermal decomposition of these compounds was studied under isothermal and non-isothermal conditions using a thermogravimetric analyzer coupled with mass spectrometer. The onset temperatures of decomposition of sodium n-propoxide and sodium iso-propoxide were found to be 590 and 545 K, respectively. These sodium alkoxides form gaseous products of saturated and unsaturated hydrocarbons and leave sodium carbonate, sodium hydroxide, and free carbon as the decomposition residue. Activation energy, E a, and pre-exponential factor, A, for the decomposition reactions were deduced from the TG data by model-free (iso-conversion) method. The E a for the decomposition of sodium n-propoxide and sodium iso-propoxide, derived from isothermal experiments are 162.2 ± 3.1 and 141.7 ± 5.3 kJ mol?1, respectively. The values obtained from the non-isothermal experiments are 147.7 ± 6.8 and 133.6 ± 4.1 kJ mol?1, respectively, for the decomposition of sodium n-propoxide and sodium iso-propoxide.  相似文献   

17.
The conditions of thermal decomposition of scandium(III) hemimellitate, trimellitate and trimezinate in air and nitrogen atmospheres have been studied. On heating, the benzene-tricarboxylates of Sc(III) decompose in two stages. First, the hydrated complexes lose crystallization water; heating in air finally yields Sc2O3, and heating in a nitrogen atmosphere Sc2O3 and C. The dehydration of the complexes is associated with strong endothermic effects. The decomposition of benzenetricarboxylates in air is accompanied by an exothermic effect and in nitrogen by an endothermic effect. The activation energies of the dehydration and decomposition reactions have been calculated for the Sc(III) benzenetricarboxylates.  相似文献   

18.
The thermal decomposition of the polyethylene-vinyl acetate graft copolymers was studied by thermogravimetry (nonisothermal conditions, constant heating rate of 4?/min). Between 275 and 350? the thermal decomposition is due to the splitting of the acetoxy groups of the grafted chains and the elimination of acetic acid. The reaction order, activation energy and frequency factor were computed by means of the Coats-Redfern and Fuoss methods. The activation energy and frequency factor valuesobtained with the two methods agree well and they do not depend on the grafted vinyl acetate content (2.6–17.6%).  相似文献   

19.
The thermal decomposition of theophylline, theobromine, caffeine, diprophylline and aminophylline were evaluated by calorimetrical, thermoanalytical and computational methods. Calorimetrical studies have been performed with aid of a heat flux Mettler Toledo DSC system. 10 mg samples were encapsulated in a 40 μL flat-bottomed aluminium pans. Measurements in the temperature range form 20 to 400°C were carried out at a heating rate of 10 and 20°C min−1 under an air stream. It has been established that the values of melting points, heat of transitions and enthalpy for methylxanthines under study varied with the increasing of heating rate. Thermoanalytical studies have been followed by using of a derivatograph. 50, 100 and 200 mg samples of the studied compounds were heated in a static air atmosphere at a heating rate of 3, 5, 10 and 15°C min−1 up to the final temperature of 800°C. By DTA, TG and DTG methods the influence of heating rate and sample size on thermal destruction of the studied methylxanthines has been determined. For chemometric evaluation of thermoanalytical results the principal component analysis (PCA) was applied. This method revealed that first of all the heating rate influences on the results of thermal decomposition. The most advantageous results can be obtained taking into account sample masses and heating rates located in the central part of the two-dimensional PCA graph. As a result, similar data could be obtained for 100 mg samples heated at 10°C·min−1 and for 200 mg samples heated at 5°C min−1.  相似文献   

20.
A comparative study of the non-isothermal decomposition of the dl-lactate hydrates of magnesium, calcium and strontium has been made with that of the dl-lactate hydrates chromium(III), manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) keeping dry air as the purge gas and the heating rate maintained at 10 K min-1. While the dl-lactates of manganese(II), cobalt(II) and copper(II) followed single step decomposition scheme suggesting that dehydration and decomposition steps overlapped, the dehydration steps of the other compounds were distinct. &agr;-T plots of none of the dehydration steps showed any induction period, indicating no physical desorption, nucleation or branching. Neither the &agr; max-values nor the onset temperatures of the dehydration steps did show any pattern. The TG data of the dehydration steps have also been analyzed using the Freeman-Carroll, Horowitz-Metzger, Coats-Redfern, Zsakó, Fuoss-Salyer-Wilson and Karkhanavala-Dharwadkar methods. Values of order of reaction, activation energy and Arrhenius factor have been approximated and compared. There are similarities in the activation energy values for the dehydration steps (< 60 kJ mol-1 in general). It is higher with group 2 metals and lower in transition metals (maximum in magnesium and lowest in chromium and iron lactates). In cases of overlapping of dehydration and decomposition steps, the activation energy values are on the lower side with the same trend (lower in cobalt and copper cases).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号