首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The heats of formation of some aluminium-barium alloys have been determined by drop calorimetry at high temperature. The heats of mixing of pure liquid Al and Ba to give the liquid alloy are ΔmH(xBa=O.056, 1215 K)=?6.6 kJ mole?1 and ΔmH(xBa=O.333, 1215 K)=?31.0 kJ mole-1. To measure its heat of formation, the solid compound Al4Ba was precipitated by addition of pure barium from a liquid (Al, Ba) bath. It was found that ΔfH(Al0.8BaO.2, solid, 1215 K)=-(37.1 ? 1.5) kJ mole?1 with reference to the pure metals in the solid state.  相似文献   

2.
Literature data on the thermodynamics of redox nicotinamide adenine dinucleotide (NAD) dependent reactions have been analyzed. It has been established that for the redox reaction of NAD
where all substances except H2 are in the aqueous buffer with the ionization enthalpy equal to zero, the most reliable thermodynamic parameters should be considered as: ΔH(298.15 K; pH 7)=?27.4±1.7 kJ mole?1; ΔG (298.15K; pH 7)=±17.8 kJ mole?1. From the above thermodynamic parameters of the reaction ΔH, ΔG and ΔS for reactions of NAD with natural substrates, synthetic mediators and some inorganic compounds have been calculated.  相似文献   

3.
A thermochemical study of natural aluminum hydroxosulfate Al2[(OH)4SO4] · 7H2O, aluminite (Nakhodka deposit, West Chukotka, Russia) is performed on a Tian-Calvet “Setaram” high-temperature heat-conducting microcalorimeter (France). The enthalpy of aluminite formation from simple compounds is obtained via the melt calorimetry of dissolution, Δf H (298.15 K) = ?4986 ± 21 kJ/mol.  相似文献   

4.
The enthalpy of sublimation of benzamide was obtained by calorimetry in the range 323<T (K)<350. From values of ΔHsub(T)=f(T), it was possible to determine ΔH0sub (298.15 K)=101.7±1.0 kJ mole?1. Using previous data on ΔH0f (c, 298.15 K) obtained by combustion calorimetry, the value of ΔH0f (g, 298.15 K)=?100.9±1.2 kJ mole?1 was calculated. With the use of energetical values concerning thioacetamide, thiobenzamide and thiourea, on the one hand, and acetamide, benzamide and urea, on the other, a comparative study was made.  相似文献   

5.
Enthalpies of sublimation for pyrazole and imidazole have been obtained by calorimetry at 298.15K. The ΔH0sub (298.15 K) values for these two compounds are, respectively, 69.16 ± 0.32 and 74.50 ± 0.40 kJ mole?1. From literature data obtained by combustion calorimetry for ΔH0f (c, 298.15 K), the enthalpies of formation of these compounds in the gaseous state (pyrazole: 185.1 ± 2.3 kJ mole?, imidazole: 133.0 ± 1.7 kJ mole?1) have been derived. Several energy values related to the molecular structure of these two compounds (as resonance energy, enthalpy of isomerization, …) have been determined. The study of pyrazole has enabled us to contribute to the evaluation of some characteristics of the NN bond.  相似文献   

6.
A thermochemical study of wulfenite, i.e., natural lead molybdate PbMoO4 (Kyzyl-Espe field deposit, Central Kazakhstan), is performed on a Setaram high-temperature heat-flux Tian-Calvet microcalorimeter (France). Enthalpies of the formation of wulfenite from oxides Δf H ox o (298.15 K) = ?88.5 ± 4.3 kJ/mol and simple substances Δf H°(298.15 K) = ?1051.2 ± 4.3 kJ/mol were determined by means of melt calorimetry. The Δf G°(298.15 K) of wulfenite corresponding to ?949.1 ± 4.3 kJ/mol was calculated using data obtained earlier for S°(298.15 K) = 161.5 ± 0.27 J/(K mol).  相似文献   

7.
Thermal and thermochemical investigations of natural hydroxyl-bearing copper sulfate Cu3SO4(OH)4??antlerite have been carried out. The stages of its thermal decomposition have been studied employing the Fourier-transform IR spectroscopy. The enthalpy of formation of antlerite from the elements ??f H m o (298.15?K)?=?(?1750?±?10)?kJ?mol?1 has been determined by the method of oxide melt solution calorimetry. Using value of S m o (298.15?K), equal to (263.46?±?0.47)?J?K?1?mol?1, obtained earlier by the method of adiabatic calorimetry, the Gibbs energy value of ??f G m o (298.15?K)?=?(?1467?±?10)?kJ?mol?1 has been calculated.  相似文献   

8.
The heat of dissolution of potassium chlorate in water at 298.15 K has been measured on an LKB 8700-1 calorimeter in the concentration range 0.063–0.659 m. The concentration dependence of the measured data was fitted by an empirical equation ΔHm (kJ mole?1) = 41.3538 + 1.8626m12 ? 6.4300m which was derived from our and Andauer—Lange data. The heat of crystallization calculated from this dependence was ΔHcryst. = 34.7 ± 0.5 kJ mole?1, which agrees with data calculated for potassium chlorate from solubility and activity data.  相似文献   

9.
The reversible dimerisation of o-phenylenedioxydimethylsilane (2,2-dimethyl-1,3,2-benzodioxasilole) has been studied by 1H NMR spectroscopy. The kinetics of this reaction can be described quantitatively by a bimolecular 10-ring formulation reaction and a monomolecular backreaction. The thermodynamic and kinetic parameters are: ΔH0 = ?43 kJ mol?1; ΔS0 = ?112 J mol?1 K?1; ΔG0298 = ?9.6 kJ mol?1; ΔH3298 = 57 kJ mol?1; ΔS3298 = ?129 J mol?1 K?1; ΔG3298 = 96 kJ mol?1; Ea = 60 kJ mol?1; A = 3.17 × 106 l mol?1 s?1. Remarkable is the low activation energy of formation of the ten-membered ring, considering that two SiO bonds have to be cleaved during the reaction. Transition states and possible structures of the ten-membered heterocycle are discussed.  相似文献   

10.
The standard enthalpies of formation of liquid and gaseous octachlorotrisilane were estimated, Δf H o (298.15, Si3Cl8, g) = ?1397(9) kJ/mol and Δf H o (298.15, Si3Cl8, l) = ?1447(9) kJ/mol. The decomposition of Si3Cl8 over the temperature range 400–1000 K was studied theoretically.  相似文献   

11.
Knudsen effusion studies of the sublimation of polycrystalline SnS, prepared by annealing and chemical vapor transport, have been performed employing vacuum micro-balance techniques in the temperature range 733–944 K and at pressures ranging from about 6 × 10?3 to 11 Pa.The third-law heats of sublimation and second-law entropy of reaction SnS(s) = SnS(g) were determined to be ΔH0298 = 220.4 ± 3.0 kJ mole? and ΔS0298 = 162.4 ± 4.5 J K?1 mole?1. From these data the standard heat of formation and absolute entropy of SnS(s) were calculated to be ?102.9 ± 4.0 kJ mole?1 and 79.9 ± 6.0 J K?1, respectively.  相似文献   

12.
Isopiestic vapor-pressure measurements were made for Li2SO4(aq) from 0.1069 to 2.8190 mol?kg?1 at 298.15 K, and from 0.1148 to 2.7969 mol?kg?1 at 323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic data for this system were reviewed, recalculated for consistency, and critically assessed. The present results and the more reliable published results were used to evaluate the parameters of an extended version of Pitzer’s ion-interaction model with an ionic-strength dependent third-virial coefficient, as well as those of the standard Pitzer model, for the osmotic and activity coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also analyzed to yield the parameters of the ion-interaction models for the relative apparent molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated solution molality of the thermodynamically stable phase Li2SO4?H2O(cr). Solubilities of Li2SO4?H2O(cr) at 298.15 K were assessed and the selected value of m(sat.)=3.13±0.04 mol?kg?1 was used to evaluate the thermodynamic solubility product K s(Li2SO4?H2O, cr, 298.15 K) = (2.62±0.19) and a CODATA-compatible standard molar Gibbs energy of formation Δf G m o (Li2SO4?H2O, cr, 298.15 K) = ?(1564.6±0.5) kJ?mol?1.  相似文献   

13.
Phase equilibria in the system CuCu2OTiO2 were investigated in the temperature range of 1160–1270 K by means of thermogravimetry and measurements of the oxygen partial pressure. The tie lines on the isothermal phase diagram run from the phase Cu3TiO4 to CuO, Cu2O, and TiO2. The existence of Cu3TiO5 and Cu2TiO3 could not be confirmed in this temperature range. The phase “Cu3TiO4” is only stable above about 1140 K and its composition fluctuates between about Cu3TiO4.3 and Cu3TiO3.9. The formation of Cu3TiO4.3 according to the reaction 1.6 CuO + 0.7 Cu2O + TiO2 = Cu3TiO4.3 is endothermic: (1160 < T < 1270 K) ΔH° = (7600 ± 450 J-mole?1; ΔS° = (6.7 ± 0.4) J·K?1·mole?1. The standard Gibbs free energy, enthalpy, and entropy of formation of Cu3TiO4.3 at 1200 K are ΔG°f = ?101.39 kJ, ΔH°f = ?1115.84 kJ, and S°f = 466.76 J·K?1. Rather similar values were found for Cu3TiO3.9.  相似文献   

14.
A thermochemical study of natural lithium micas, iron-containing polylithionite and lepidolite, was performed on a high-temperature heat-flux Calvet microcalorimeter (Setaram, France). Melt solution calorimetry was used to measure the enthalpies of mineral formation from the elements Δf H°el (298.15 K), ?5989.3 ± 9.6 and ?5981.3 ± 6.3 kJ/mol, respectively. The drop method was used to determine the enthalpy increments heating of the micas over the temperature interval 444–973 K. The equations for the temperature dependences of the heat capacities and enthalpies of Fe-polylithionite and Fe-lepidolite were obtained. The S° (298.15 K) and Δf G°el (298.15 K) values were estimated. The thermodynamic functions of the micas were calculated over the temperature range 298.15–1000 K.  相似文献   

15.
Cadmium thiourea reinickate undergoes two-stage thermal decomposition on heating. The DTG peak temperatures are 291 and 469°C and the corresponding DTA temperatures are 255 and 490°C. The kinetic parameters for the first stage decomposition are E* ≈ 120kJ mole?1; Z ≈ 1.2 × 108 cm3 mole?1 sec?1 and ΔS* ≈ ?95 J mole?1 K?1. For the second stage, E* ≈ 133 kJ mole?1; Z ≈ 6.1 × 105 cm?1 mole?1 sec?1 and ΔS* ≈ ?142 J mole?1 K?1.  相似文献   

16.
A thermochemical study of lithium siderophyllite (K0.75Na0.06Rb0.01Ca0.11)(Li0.11Fe 1.25 2+ Mn0.02Mg0.66Al0.35Fe 0.23 3+ Ti0.18)[Si2.53Al1.47O10](OH)1.63F0.37 (I) and siderophyllite (Al-Fe biotite) (K0.89Na0.04)(Fe 1.69 2+ Mn0.03Mg0.20Al0.59Fe 0.14 3+ Ti0.06)[Si2.80Al1.20O10](OH)0.80F1.16Cl0.04(II) was performed on a high-temperature Tian-Calvet microcalorimeter. Their enthalpies of formation from the elements, Δf H el ° (298.15 K) = ?5724 ± 12 (I) and ?5573 ± 14 (II) kJ/mol, were determined by melt solution calorimetry. The Δf G el ° (298.15 K) = ?5359 ± 12 (I) and ?5231 ± 14 (II) kJ/mol values were calculated. An increase in the content of iron in siderophyllite increased the entropy, enthalpy, and free energy of formation from the elements.  相似文献   

17.
The heat of reaction for SnJ2 (c)+J2 (c)+4045 CS2 (l)=[SnJ4; 4045 CS2] (sol) has been determined to be (?41.12±0.55) kJ mol?1, [(?9.83±0.13) kcal mol?1] by isoperibol solution calorimetry. Combining this result with the heat of formation of SnJ4 in CS2 determined in a previous investigation11 the value (?153.9±1.40) kJ mol?1, [(?36.9±0.33) kcal mol?1] has been derived for the heat of formation, ΔH f ι (SnJ2;c; 298.15 K), of tin diiodide.  相似文献   

18.
It was shown that the published data on the thermodynamic properties of aluminum monooxycarbide Al2OC (ed) are not consistent with the phase diagram of the Al2O3-Al4C3 system. A thermodynamic modeling of the equilibrium state of the Al2O3-Al4C3 system made it possible to obtain new estimates of the standard entropy and enthalpy of formation of aluminum monooxycarbide: S°(298.15 K, cd. Al2OC) = 45.3 J/(K mol) and Δf H°(298.15 K, cd, Al2OC) = ?625.6 kJ/mol.  相似文献   

19.
The binary system citric acid-water has been investigated with static vapour pressure measurements, adiabatic calorimetry, solution calorimetry, solubility measurements and powder X-ray measurements. The data are correlated by thermodynamics and a large part of the phase diagram is given. Molar heat capacities of citric acid are given from 90 to 330 K and for citric acid monohydrate from 120 to 300 K. The enthalpy of compound formation ΔcomH (298.15 K)=(?11.8±1) kJ mole?1.  相似文献   

20.
By using different techniques the vapor pressure of ferrocene, mono-acetyl ferrocene and 1,1′-di-acetyl ferrocene was measured. The following pressure—temperature equations were derived ferrocene log P(kPa)= 9.78 ± 0.14 ? (3805 ± 46)/T mono-acetyl ferrocene log P(kPa) = 14.83 ± 0.14 ? (5916 ± 48)/T 1,1′-di-acetyl ferrocene log P(kPa) = 8.82 ± 0.11 ? (4289 ± 44)/T By second- and third-law treatment of the vapor data the ΔH0sub,298 = 74.0 ± 2.0 kJ mole?1 for the sublimation process of ferrocene was calculated and compared with the literature data. For the sublimation enthalpy of mono- and 1,1′-di-acetyl ferrocene the values ΔH0sub,298 = 115.6 ± 2.5 kJ mole?1 and ΔH0sub,298 = 91.9 ± 2.5 kJ mole?1 were derived by second-law treatment. Thermal functions of these compounds were also estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号