首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transparent silicon polymer gel was prepared by sol–gel technology to serve as the base in the preparation of highly disperse SiO2–C composites at various temperatures (400, 600, 800, and 1000°C) and various exposure times (1, 3, and 6 h) via pyrolysis under a dynamic vacuum (at residual pressures of ~1 × 10–1 to 1 × 10–2 mmHg). These composites were X-ray amorphous; their thermal behavior in flowing air in the range 20–1200°C was studied. The encapsulation of nascent carbon, which kept it from oxidizing in air and reduced the reactivity of the system in SiC synthesis, was enhanced as the carbonization temperature and exposure time increased. How xerogel carbonization conditions affect the micro- and mesostructure of the xerogel was studied by ultra-small-angle neutron scattering (USANS). Both the carbonization temperature and the exposure time were found to considerably influence structure formation in highly disperse SiO2–C composites. Dynamic DSC/DTA/TG experiments in an inert gas flow showed that the increasing xerogel pyrolysis temperatures significantly reduced silicon carbide yields upon subsequent heating of SiO2–C systems to 1500°C, from 35–39 (400°C) to 10–21% (1000°C).  相似文献   

2.
3.
Woodceramics, a carbon/carbon composite of plant-originated carbon reinforced by glassy carbon from phenolic resin, was prepared from apple pomace at carbonizing temperatures of 1073 K (AWC800) and 1473 K (AWC1200), and characterized by thermoanalytical methods and X-ray diffraction (XRD). Simultaneous differential scanning calorimetry (DSC) and thermogravimetric (TG) showed complicated overlapping reactions similar to those of coal. The initial temperature of pyrolysis was obtained by fitting logistic functions to observed TG data. The results suggested that AWC1200 contained more volatile matter than AWC800. In an inert atmosphere, complicated devolatilization takes place. In an oxidizing atmosphere, thermal change occurs roughly in four steps: desorption of physically adsorbed matter; pyrolysis into aliphatic and aromatic fragments; ignition; combustion of char. The oxidation resistance of AWC1200 was superior to AWC800.  相似文献   

4.
According to the recommendations developed by the Kinetics Committee of the International Confederation for Thermal Analysis and Calorimetry (ICTAC), non-isothermal pyrolysis experiments were carried out to analyze and compare two types of oil shale from the northeast of China using simultaneous differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis at temperatures ranging from 40 to 850 °C. The pyrolysis process of oil shale begins with the evaporation of small molecular substances, then continues by the pyrolysis of kerogen, and finally ends mainly with the complete decomposition of carbonates. In this whole process, almost 36 % of overall pyrolytic heat was used for the pyrolysis of kerogen. When retorting air-dried basis oil shale below 520 °C, a considerable proportion of the heat required will have to be used mainly for the evaporation of small molecular substances below 185 °C. Specific heat capacities of two oil shale semicokes were measured below 500 °C by DSC method, showing that specific heat capacity of semicoke will increase with the increase of the temperature, and carbonization of kerogen can bring about a further positive effect on it. Coats–Redfern method was used to calculate kinetic parameters in three pyrolysis stages.  相似文献   

5.
In this research, non-isothermal combustion and kinetics of Silopi (Turkey) asphaltite samples were investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). A sample size of 10 mg, heating rates of 5, 10, 15 and 20°C min−1 were used in the temperature range of 20–600°C, under air atmosphere. Two reaction regions were observed in DSC curves. The first region is due to the evaporation of moisture in asphaltite sample whereas, release of volatile matter and burning of carbon is called the second region. A general computer program was developed and the results of four different kinetic models (Arrhenius, Coats-Redfern, Ingraham-Marrier and Horowitz-Metzger) are compared and discussed with regards to their accuracy and the ease of interpretation of the kinetics of thermal decomposition. In general similar activation energy values were obtained when the kinetic models are compared with each other. It was also observed that there was no general trend in the activation energy values from the point of heating rates.  相似文献   

6.
Thermogravimetry (TG), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were used to study the thermal behaviour of the organic matter in the natural phosphate and its concentrate kerogen from the Moroccan deposit. The TG analysis showed that both the investigated samples exhibited a one-step thermal oxidation in the main mass loss area, between 160 and 540°C, attributed to the hydrocarbon material. When DSC analyses of oxidation as well as pyrolysis yielded two evolutionary stages of the hydrocarbon in this temperature range : the first one at 160-360°C and the second one above 360°C. Pyrolytic kerogen decomposition was monitored by measuring changes in the principal FTIR organic bands. The results showed, in the first stage, the progressive decrease of signals due to CH2 and CH3 vibrations as well as the carbonyl and carboxylic bands, and their subsequent disappearance at 300°C. In the second stage above 400°C, the signal due to the aromatic components (1600 cm-1) appeared but decreased with increasing temperature up to 540°C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.

In the paper, various laboratory pyrolytic methods were used to evaluate selected petroleum source rocks. The methods used are: Rock–Eval pyrolysis, Py–GC pyrolytic technique and TG/DTG/DSC. The experiments of the last method were performed according to three different procedures. Each of them provided different, specific data. The selected rock sample material was diversified in terms of stratigraphical position, structural unit and place of collection (outcrop or borehole). Based on the Rock–Eval analysis results, kerogen in samples can be classified as type II. Additional information on the quality of pyrolysis products was obtained from the Py–GC analysis. Thanks to the combination of the all three implemented pyrolytic techniques, the quality of the generation potential of the source rocks can be evaluated in details. In some samples, the oxidation and pyrolysis of organic matter occur in two stages, what is the evidence of the complex nature of the organic substance. The maximum of pyrolysis reaction is detected by TG/DTG measurement in the range of temperature from 450 to 580 °C, depending on the maturity of organic matter. The maturity level increases with the rock stratigraphic position. The proportions of loss in mass observed in respective stages of pyrolysis in course of TG/DTG experiment are in correspondence with the observations of the released fractions in the Py–GC analysis. The Carpathian Menilite shales could be classified as source rocks with high oil generation potential. Also, the Lower Silurian and Ordovician shales are characterized by high oil-producing potential with a lower content of mineral matter. Cambrian rocks show a different character and gas-prone generation potential.

  相似文献   

8.
The degradability and durability for polymer–nanocomposites under various environmental conditions are from the essential fields of research. This study was carried out to examine the thermal stability of polystyrene loaded by carbon (C) nanoparticles up to 20 wt% content. The thermal degradation of PS/C nanocomposites were studied by thermogravimetry analysis and differential scanning calorimetry (DSC) under non-isothermal condition and inert gas atmosphere at constant heating rate 10 °C min?1. The variation of degradation characteristic temperatures as a function of C content has been a non-monotonic behavior. The obtained results suggested that the C nanoparticles act as a promoter slowing down the degradation and providing a protective barrier to the nanocomposite, except 5 wt% C content. The latter exception was confirmed by DSC curve through the emergence of a small endothermic peak before the fundamental endothermic, melting, one.  相似文献   

9.
Thermal characterization of humic acids and other components of raw coal   总被引:1,自引:0,他引:1  
Over the ages, the deposits of dead vegetation buried by rock and mudflows, compacted and compressed out all of the moisture; it slowly carbonized and became coal. Humic acids are natural organic acids — brown coloured biological macromolecules, formed in coal by biochemical changes (decomposition, pyrolysis) of lignocellulosic matter. From lignite coal bed, the humates were extracted in alkaline medium and isolated from the residual fraction. Humic acids were obtained by treating humantes’ solutions with HCl. Thermal analysis (TG, DTG, DTA and DSC) was used in order to establish the decomposition and thermal effects of lignite, humates, humic acids and residual matter extracted from Rovinari mines in Romania. A non-isothermal linear temperature regime was imposed to reveal all decomposition steps.  相似文献   

10.
The melting behavior of isothermally crystallized poly(butylene succinate) (PBS) has been investigated using differential scanning calorimetry (DSC) and wide‐angle X‐ray analysis. The samples crystallized between 80°C to 100°C show middle endotherm at the position just before the high exotherm, while the others under 80°C show two endotherms (low and high). From the results of the melting peak vs. crystallization temperature plot, it was suggested that the middle endotherm corresponds to the melting process of the original crystallites and the high endotherms to the melting process of the recrystallized ones. As the DSC heating rate was increased, the peak temperature of the low and middle endotherms increased and that of the high endotherm decreased, indicating that the low endotherm was due to the original crystallites as well as the middle endotherm. Consequently, in the heating scan of PBS, the existence of two kinds of morphologically different crystallites as well as the process of melting and recrystallization becomes evident. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1357–1366, 1999  相似文献   

11.
Understanding the response of drugs and their formulations to thermal stresses is an integral part of the development of stable medicinal products. In the present study, the thermal degradation of two drug samples (cetirizine and simvastatin) was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the cetirizine occurs during two temperature ranges of 165–227 and 247–402 °C. The TG/DTA analysis of simvastatin indicates that this drug melts (at about 143 °C) before it decomposes. The main thermal degradation for the simvastatin occurs during two endothermic behaviors in the temperature ranges of 238–308 and 308–414 °C. The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of both the drug samples was verified. The results showed that as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by ASTM E696 method, the values of activation energy for cetirizine and simvastatin were 120.8 and 170.9 kJ mol?1, respectively. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   

12.
The thermal decomposition of basic copper carbonate (malachite; CuCO3·Cu(OH)2) in a dynamic atmosphere of air or nitrogen was studied via TG, DTA and DSC at different heating rates. The non-isothermal kinetic and thermodynamic parameters were estimated. The decomposition course was thoroughly followed by examining the structural and morphological consequences of calcining the material at elevated temperatures by IR, XRD and SEM. The results obtained showed that in air CuCO3·Cu(OH)2 released 0.5 H2O at 195°C, transforming into the azurite structure 2CuCO3·Cu(OH)2. Decomposition then commenced, through two endothermic steps maximized at 325 and 430°C. The resultant product maintained the water released from the decomposition process up to 650–750°C. A schematic decomposition pathway has been proposed in terms of the thermal and physicoanalytical results.  相似文献   

13.
To elucidate the formation process of HCN from the pyrolysis of glycine, the small molecule gaseous pyrolysates, H2O, NH3, CO2, CO, HNCO, and HCN, were analyzed in real-time by TG-FTIR. The appearance of the volatile pyrolysis products and the solid residue was determined in real-time at their corresponding formation temperatures by online Py-two-dimensional GC–MS with heart-cutting and LC–MS/MS. The pyrolysis of 2,5-diketopiperazine, a thermolytic by-product of glycine pyrolysis, was also studied. The results showed that: (1) the pyrolysis of glycine can be divided into three temperature ranges 200–300, 300–440, and 440–900 °C; HCN forms in each range with three peaks appearing at 273, 422, and 763 °C, respectively. (2) The mechanistic pathways of HCN formation from glycine in the low- and high-temperature heating stages are different. Below 273 °C, glycine undergoes a decarboxylation reaction to produce methylamine, which subsequently forms HCN by means of dehydrogenation. Above 300 °C, glycine gives relatively large amounts of HCN via 2,5-diketopiperazine and subsequent HNCO or methylenimine formation.  相似文献   

14.
In this paper, a TG/DTG–DSC–FTIR study of type I collagen extracted from bovine Achilles tendon both in inert (nitrogen) and oxidative atmosphere (synthetic air and oxygen) from room temperature to 700 °C was performed. The thermal analysis results have shown that after initial dehydration, collagen exhibits a single decomposition step in nitrogen (due to pyrolysis), while in air and oxygen two steps are observed due to thermo-oxidative decomposition, the latter being highly exothermic. The CO2 bands dominate the FTIR spectra of evolved gases in all atmospheres (especially in air and oxygen), along with the characteristic bands of ammonia, water, HNCO, methane. In nitrogen, the bands of pyrrole, HCN, and ethane were also identified, while in oxidative atmospheres, nitrogen oxides and CO are released. A study was also performed by comparing the DTG and gas evolution curves observed for the three atmospheres.  相似文献   

15.
The preliminary studies of the thermal behaviour of polyester obtained in polycondensation process of cyclohex-4-ene-1,2-dicarboxylic anhydride and ethylene glycol and its new epoxidized form have been performed. The thermal characterization of initial polyester and its completely oxidized form was done by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The non-isothermal DSC was applied to determine the influence of time and the temperature on the chemical modification of initial polyester using 38-40% solution of peracetic acid. On the basis of DSC profiles it has been found that the endothermic transition, due to the degradation process of initial polyester was characteristic feature under controlled heating program. The two characteristic transitions for the new epoxidized polyester, the exothermic peak corresponded to the thermal crosslinking of epoxidized polyester (322.8–336.4°C) and the endothermic decomposition peak of the cured material (363.8–388.9°C) were observed. The peak maximum temperatures (Tmax) and the heat of cross-linking reaction (ΔHc) for epoxypolyester prepared at 20–60°C under 1–4 h were evaluated. The Tmax1 were almost independent from epoxidation conditions, while, the values of ΔHc were dependent from conditions of synthesis. The ΔHc values of this process decreased when time of oxidation increased. The highest values of ΔHc at 40°C were obtained. Additionally, TG experiments confirmed two separated degradation steps of the new epoxidized polyester indicating the ester (370–380°C) and ether (450–460°C) bond breakdown.  相似文献   

16.
Household coal combustion has caused endemic poisoning in southwest Guizhou Province of China. The mineralogy, geochemistry and mode of occurrence of trace elements (TEs) of coal from this area were examined, and oxidative pyrolysis experiments of the coal were conducted in a box resistance reactor at 300–1200 °C to evaluate the volatilization of trace elements. In coal, As, Sb, Pb, Zn, W, Mo, and Cr are highly enriched when compared to both the world coal and Chinese coal. Cadmium, Sr, and Ba are all slightly higher than the average value for Chinese coal. The volatility of trace elements exhibits a close correlation with the mode of element occurrence. The considerable volatilization of As, Sb, Pb, Zn, Cd and Cr below 450 °C is thought to be related to the organic form of these elements. In the temperature range of 450–1200 °C, the volatility of all trace elements except As increases slowly with temperature because these elements are highly associated with silicates. Among the hazardous trace elements, As is the most volatile, and Sb, Pb, Zn, Cd and Cr are moderately volatile. Arsenic exhibits a uniquely high release at 900–1000 °C, which could be attributed to the high proportion of As association with sulfide. Because TEs are primarily inorganically-associated, the volatilization of TEs is not comparable to the loss of coal weight during pyrolysis. At high temperatures, a significantly low coal weight loss can result in a significant volatility of TEs.  相似文献   

17.
Pyrolysis of N-doped organic xerogels prepared from different N-containing precursors has been studied by TG–MS. The pyrolytic process has been ascertained to consist of three steps. The first step (up to cca. 250 °C) has been interpreted as water loss (humidity, fixed water from pores) and in some cases as formaldehyde loss. The second step has been connected with volatile substances evolution (cca. 250–450 °C) with predominant release of NH3, CO2 and products of melamine (M) or urea decomposition. Reaction/pore water and formaldehyde have also been detected in this step. The third step of pyrolysis (450–1,000 °C) has been ascribed to carbonization reaction when the other releases of NH3, CO2, reaction/pore water and M decomposition products have continued. This was accompanied with evolution of H2 and 3-hydroxypyridine. On the basis of TG measurements, it was found that increasing time of condensation of organic xerogels and amount of used catalyst lead to higher yield of carbonaceous products. In addition, adsorption experiments of Pb(II) on N-doped carbon xerogels proved that relationship between adsorption properties of xerogels and nitrogen loss during pyrolysis exists. When the sample contains only amino groups, they are lost during pyrolysis as ammonia and the adsorption ability is low, while nitrogen comprised in the aromatic rings of N-precursors stays in the structure and causes enlarging of adsorption capacity.  相似文献   

18.
To develop thermal stable flavor, two glycosidic bound flavor precursors, geranyl-tetraacetyl-β-D-glucopyranoside (GLY-A) and geranyl-β-D-glucopyranoside (GLY-B) were synthesized by the modified Koenigs–Knorr reaction. The thermal decomposition process and pyrolysis products of the two glycosides were extensively investigated by thermogravimetry (TG), differential scanning calorimeter (DSC) and on-line pyrolysis-gas chromatography mass spectroscopy (Py-GC-MS). TG showed the T p of GLY-A and GLY-B were 254.6 and 275.7°C. The T peak of GLY-A and GLY-B measured by DSC were 254.8 and 262.1°C respectively. Py-GC-MS was used for the simply qualitative analysis of the pyrolysis products at 300 and 400°C. The results indicated that: 1) A large amount of geraniol and few by-products were produced at 300°C, the by-products were significantly increased at 400°C; 2) The characteristic pyrolysis product was geraniol; 3) The primary decomposition reaction was the cleavage of O-glycosidic bound of the two glycosides flavor precursors. The study on the thermal behavior and pyrolysis products of the two glycosides showed that this kind of flavor precursors could be used for providing the foodstuff with specific flavor during heating process.  相似文献   

19.
Characterization, thermal stability, and thermal decomposition of alkaline earth metal mandelates, M(C6H5CH(OH)CO2)2, (M = Mg(II), Ca(II), Sr(II), and Ba(II)), were investigated employing simultaneous thermogravimetry and differential thermal analysis or differential scanning calorimetry, (TG–DTA or TG–DSC), infrared spectroscopy (FTIR), complexometry, and TG–DSC coupled to FTIR. All the compounds were obtained in the anhydrous state and the thermal decomposition occurs in three steps. The final residue up to 585 °C (Mg), 720 °C (Ca), and 945 °C (Sr) is the respective oxide MgO, CaO, and SrO. For the barium compound the final residue up to 580 °C is BaCO3, which is stable until 950 °C and above this temperature the TG curve shows the beginning of the thermal decomposition of the barium carbonate. The results also provide information concerning the thermal behavior and identification of gaseous products evolved during the thermal decomposition of these compounds.  相似文献   

20.
NiO/SiO2 catalysts were prepared with Ni contents ranging from 2–15% using a microporous silica support at pH ~11.5. The role of the method of preparation on the resulting catalyst is also investigated. Structural and textural changes were followed using X-ray diffraction, TG and DTA techniques—the surface area measurements were carried out on the parent catalysts and those produced in the temperature range 250–1000°C.Impregnation of the silica gel in the nickel ammine complex solution (catalyst series 1N–4N) with subsequent drying at 80°C overnight produced crystalline catalysts with two distinct peaks at d-spacings of 2.035 and 2.349 Å resulting from a surface silicate. This is easily destroyed by thermal treatment at 250°C for Ni contents ? 10% but is stable to this temperature for the higher Ni content. Drying the catalyst at room temperature (3Nb) gives rise to an amorphous product. A non-crystalline catalyst is also obtained when concentrated ammonia solution is added to the adsorbed nickel salt (3Nc). At high Ni content, the hydroxo ligand becomes significant and results in a surface compound in which one silanol group is attacked. This gives rise to a crystalline product at 500°C with characteristic d-spacings at 2.201 and 2.049 Å which, subsequently, produces a poorly crystalline NiO product at 1000°C. The presence of this hydroxo ligand is manifested by a small endotherm at 260°C.At Ni contents below 15% but greater than 2% a small exotherm is observed at ~ 500°C resulting from a reduction process. Entrained SO42? ions present as an impurity are evolved at temperatures & > 750°C and can be estimated by TG analysis.The specific surface area decreases with Ni contents ? 5% but increases for higher Ni contents. Catalyst samples containing 15% Ni possess the highest specific area at all temperatures.Pore structure analysis showed that microporosity increased with increase in Ni content for the catalyst series 1N–4N. Samples from preparations 3Nb and 3Nc showed more mesoporosity than that of 3N. Thermal treatment causes widening of the pores for catalysts 1N–3N becoming predominantly mesoporous, co-existing with some micropores. Catalyst samples with 15% Ni remained predominantly microporous-mesoporosity increasing only at 1000°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号