首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
采用动力机械变工况性能解析分析方法,研究了大气温度变化对燃气轮机功热并供和联合循环装置性能影响.指出燃气轮机在带有余热利用的条件下,大气温度的影响明显减弱,并对不同燃气轮机设计参数和蒸汽设计参数影响做了分析比较。  相似文献   

2.
本文应用变工况的折合参数相似理论和因次分析原理,确定燃气轮机功热并供装置标定试验的试验工况原则,并提出简捷合理的修正方法。具体推导多结合较复杂的分轴燃气轮机与排气全燃型锅炉联合的功热并供系统进行。对工程实践有一定实用价值。  相似文献   

3.
单轴恒速回热燃气轮机的变工况解析特性及初步经济分析   总被引:2,自引:0,他引:2  
本文给出单轴恒速回热燃气轮机变工况特性的显式解析解,并且总结了其变工况的典型情况;发现当对所有参数都用与其设计值的比值表达时,燃气轮机效率可以基本总结为单一曲线,并定量论证了恒速单轴燃气轮机采用回热后变工况效率反而相对有所下降。利用得出的解析解,还对采用回热的经济评价给出了初步分析,给出了采用回热合适与否的判别公式。  相似文献   

4.
燃气轮机热电并供系统变工况性能   总被引:1,自引:0,他引:1  
一、典型系统及变工况计算方法 带有注蒸汽和补燃的燃气轮机热电并供系统,能够在很大范围内满足变工况的要求,但尚很少见有其变工况的全面分析。本文对此问题给出了一些研究成果。本文所分析的系统的示意图见图1,主要由燃气轮机与余热锅炉两大部件组成。系统的变工况  相似文献   

5.
通过大量实测数据总结出发电内燃机的典型变工况特性曲线,并给出相应的公式.结合饱和蒸汽余热锅炉的变工况特性解析解,对内燃机热电联产系统的变工况特性进行了分析:逼近温差ΔTa和相对蒸汽产量随负荷降低而减小,总能利用率、当量(火用)效率和经济(火用)效率随负荷减小先增后减,存在一个最佳值,该值对应内燃机最佳工作状态.余热锅炉蒸汽参数越高,变工况时ΔTa越低.与单轴燃气轮机热电联供装置相比,内燃机联产系统的ΔTa在低工况下更易变为负值,原因为前者在降负荷时烟气流量略增加,而后者降低.ΔTa变负会对余热锅炉有重要影响,内燃机进行热电联产时要注意其安全运转问题.  相似文献   

6.
功热并供国热燃气轮机及其热力分析张娜,蔡睿贤(中国科学院工程热物理研究所北京100080)关键词功热并供;回热;当量效率1前言回热和功热并供的主要效果都是降低燃气轮机的排热温度,尽可能地回收余热。本文建议在回热之后,再利用其余热加热热水,以尽可能提高...  相似文献   

7.
以天然气为燃料,燃气轮机驱动的建筑冷、热、电联产系统具有能源效率高,污染物排放少,供能安全、可靠等优点。将蓄能与联供系统相结合,选择合适的蓄能位置,对改善系统变工况性能意义重大。本文建立了带理想蓄能装置的冷电联产系统(燃气轮机、吸收机)简化数学模型,以一次能耗最小为目标,分析比较了不同蓄能位置对系统性能的影响。结果表明在联供系统中加入蓄能装置能有效起到减容增效的作用,理想蓄能装置放在吸收机后更有利于提高系统性能。  相似文献   

8.
本文提出了一种带间冷回热的太阳能燃气轮机与卡林那循环组成的联合循环发电系统,对其热力性能进行了分析,并研究了关键运行参数对热力性能影响。塔式太阳能接收器将经过间冷压缩的压缩空气加热至1000℃用以驱动燃气轮机做功。卡林那循环用以回收燃气余热发电。基于蔡睿贤的比较法,推导出了该系统太阳能热发电效率的简明解析式。结果表明,当燃气轮机入口温度为1000℃时,该系统的(火用)效率和太阳能热发电效率分别可达到29%和27.5%,比太阳能燃气-蒸汽联合循环分别高1.8%和1.6%。该系统的提出,为提高太阳能热发电系统的太阳能热发电效率提供了一种方法,并且对太阳能热发电耗水大的问题提供了一个解决途径。  相似文献   

9.
本文将注蒸汽燃气轮机(STIG)循环和低温多效热蒸汽压缩(METVC)海水淡化系统结合,构成了STIG-METVC复合系统,分析了系统的热力性能,并讨论了产功、产水子系统界面的情况以进一步揭示系统特点.主要结论包括:(1)与单目标系统相比,此联产系统节能效果显著,尤其是在低压比和低注蒸汽比时.(2)降低压比和注蒸汽比,可提高系统产水量,降低功水比. (3)传统意义上的系统(火用)效率不能合理反映STIG-METVC系统的性能,因此不能作为性能评价指标.(4)余热锅炉是产功、产水子系统的界面,其灿损较大,在各部件中居第二位.提高蒸汽压力有助于减小余热锅炉炯损,但此方法对改善STIG-METVC系统性能效果甚微.  相似文献   

10.
功热并供评价准则及燃气轮机功热并供基本分析   总被引:12,自引:4,他引:8  
除了常用的总能源利用率和(火用)效率外,本文提出了另一个紧密结合经济考虑的功热并供评价准则——经济(火用)效率.由此可以比较实际地基本定量分析与优化功热并供燃气轮机的设计参数,并总结出一些规律,可供实用参考.  相似文献   

11.
单轴恒速燃气轮机及其功热并供装置的变工况显式解析解   总被引:12,自引:2,他引:10  
主要符号表Ci,i=1~4压气机特性式中常数G流量m压气机设计转速线延长线与Gc轴交点N功率n转速P压力P压气机设计转速线延长线与Gc轴两支点距功热比T温度ti,i=1~4透平特性式中常数Z总能利用率α下标β0设计参数△Tα逼近温差△Tp节点温差n效率θ经济效率[3]μ流量比π压比T温比总压恢复系数上标折合参数比折合参数下标0设计参数1,2压气机进、出口3,4透平进、出口5余热锅炉燃气出口b燃烧室C压气机F油耗gt燃气轮机当量效率[3]饱和蒸汽t透平w余热锅炉给水1绪言如何检验各种变工况数值解程序的准确度与有效性以及各种算法的适用性,通常…  相似文献   

12.
This work aims to analyse the part load performance in a cogeneration system which consists of a single shaft gas turbine and a heat recovery steam generator. Two distinct part load control modes are considered: the constant air flow and the variable air flow. Meanwhile, the effect of variation in the coolant fraction is evaluated, whose purpose is to maintain the blade temperature as high as possible and thus minimise the coolant consumption. The design point parameters of the heat recovery steam generator are determined by the limiting factors on the part load operation, which are represented by the pinch point temperature difference and the approach temperature difference. It turns out that for both air flow control modes, the variable control of coolant fraction leads to improvement of the gas turbine efficiency, while it reduces the heat recovery potential. On the whole, the variable control of coolant fraction has a favourable effect on the overall fuel economy in the cogeneration system.  相似文献   

13.
The gas turbine engine is known by its relatively low efficiency especially at part load. Therefore, to conserve energy and reduce the operating cost, waste heat is recovered by combining a heat-exchange gas turbine cycle with closed organic Rankine cycle. A computer programme was made to calculate parametrically the individual and combined cycle performances, namely the work and efficiency of each. The parameters considered were: gas turbine pressure ratio; maximum cycle temperature; fluid-air mass ratio; and type of working fluid.This analytical study shows that R113 is the optimum choice because it gives the smallest, hence the most economical, size of turbo-expander. Maximum cycle temperature and pressure ratio are relatively the most important parameters. Economic analysis indicates very good rate of return on investment, related with heat recovery by cogeneration.  相似文献   

14.
Decrease of fuel supplies and cost increases make it vital for industries, especially energy intensive ones, to consider conserving available sources and convert losses into sources of energy.In this paper, a gas turbine-based cogeneration system is suggested to utilize a refinery's reformer gas in the gas turbine, and furnaces flue gases together with the engine exhaust gases in a heat recovery steam generator, HRSG. This is proposed as an alternative to the currently used system where the gas turbine and the steam generator are used separately. Operating variables comprising compressor pressure ratio and turbine inlet temperature are varied widely to evaluate performance; namely power, SFC, overall efficiency and annual fuel savings at design and off-design loading conditions using a dedicated computer program.Results show that the proposed system offers 100% higher overall efficiency and $5.25 million annual fuel saving for a 12 MWe gas turbine.  相似文献   

15.
The first part of this paper presents a waste heat recovery scheme for the Dura (Baghdad, Iraq) oil refinery energy plant. Both the wasted heat of the process return condensate and the flue gases are utilized for low temperature feedwater and fuel heating. The steam saved, both from the main steam line and turbine extraction system, was found to increase the steam and plant overall efficiency by 18%.An alternative cogeneration energy plant is presented in the second part of this study. The proposed plant utilizes the gas turbine exhaust, in conjunction with a heat recovery boiler, to produce the process steam requirement. With this alternative plant, the overall efficiency increases by 31.6%, while the steam efficiency increases by 19%. The outstanding features and advantages of the proposed plants are highlighted.  相似文献   

16.
Combined gas/steam turbine cycle plants have been proposed for cogeneration of electricity and process steam. Examples are combined-cycle power plants coupled with sea-water desalination, district heating plants, chemical industries, etc. In combined heat and power plants, the gas turbine exhaust heat is utilized through the use of heat recovery steam generators (HRSG's). As a result, these waste heat generators (boilers), whether fired or unfired, control the performance of the combined plant lower side (bottoming cycle). Moreover, any changes made in the HRSG operating parameters (i.e. the pinch point, approach temperature, first and second stage pressures, and mass ratios) can greatly affect the HRSG performance and will eventually affect the overall combined plant performance. This paper presents a method to predict the performance of the heat recovery steam generators (HRSG)/steam bottoming cycle combined with sea-water desalination plant at various steam and exhaust gas conditions.  相似文献   

17.
单轴燃气轮机联合循环变工况[2mm]典型解析特性   总被引:2,自引:0,他引:2  
摘 要~本文对余热锅炉型联合循环给出其变工况特性解析解并加以规律性的总结,它虽不能严格表达某一具体机组的准确特性,但可将其视为这类动力装置通用特性的典型表达。  相似文献   

18.
Cogeneration systems often provide a very effective means of integrating power generation with the provision of thermal energy to an industrial process. Various types of power generating machines can be used, but combined cycle cogeneration systems can offer significant advantages over other technologies in many medium and large scale applications. The systems that are used consist of fired prime movers (usually gas turbines), discharging their exhaust heat into heat recovery steam generators. The steam raised in this way is passed through back-pressure steam turbines to extract additional power before finally delivering its residual heat content to process heating duties.This paper presents an overview of the economic trade-offs in the design of single cycle and combined cycle systems. Generalizations are derived from this investigation, leading to the identification of three distinct classes of problem for which different types of cogeneration systems (combined cycle or single cycle) are appropriate. Case study results are presented to illustrate the principles employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号