首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Excess properties calculated from the literature values of experimental density and viscosity in N,N-dimethylacetamide + formamide binary mixtures between 298.15 K and 318.15 K can lead us to test different correlation equations as well as their corresponding relative functions. Inspection of the Arrhenius activation energy Ea and the enthalpy of activation of viscous flow ΔH* shows very close values. Here, we can define partial molar activation energies Ea1 and Ea2 for N,N-dimethylacetamide and formamide, respectively, along with their individual contribution separately. Correlation between the two Arrhenius parameters of viscosity in all compositions shows the existence of two main distinct behaviours separated by the mole fraction equal to 0.3 of N,N-dimethylacetamide. In addition, the correlation between Arrhenius parameters reveals interesting Arrhenius temperature, which is closely related to the vaporisation temperature in the liquid vapour equilibrium and the limiting corresponding partial molar properties can permit us to predict the boiling points of the pure components.  相似文献   

2.
Excess properties calculated from literature values of experimental density and viscosity in N,N-dimethylformamide (DMF) + methanol (Met) binary mixtures (from 303.15 to 323.15 K) can lead us to test different correlation equations as well as their corresponding derivative properties. Inspection of the Arrhenius activation energy (Ea) and the enthalpy (ΔH*) of activation of viscous flow shows very close values; here, we can define partial molar activation energies Ea1 and Ea2 for N,N-DMF and Met, respectively, along with their individual contribution separately. Correlation between the two Arrhenius parameters of viscosity in all compositions shows existence of main distinct interaction behaviours delimited by particular mole fractions in N,N-DMF. In addition, we add that correlation between Arrhenius parameters reveals interesting Arrhenius temperature that is closely related to the vaporisation temperature in the liquid vapour equilibrium, and the limiting corresponding partial molar properties can permit us to estimate the boiling points of the pure components.  相似文献   

3.
Excess properties calculated from the experimental values of densities and viscosities have been presented in the previous work. These experimental values can also lead us to test different correlation equations as well as their corresponding relative functions. Inspection of the Arrhenius activation energy Ea and the enthalpy of activation of viscous flow ΔH* found very close values, here we can define partial molar activation energy Ea1 and Ea2 for N,N-dimethylacetamide and methanol respectively along with their individual contribution separately. Correlation between the two Arrhenius parameters of viscosity in all compositions shows existence of distinct behaviours separated by particular mole fractions of N,N-dimethylacetamide. In addition, the correlation between Arrhenius parameters reveals interesting Arrhenius temperature which is closely related to the vaporisation temperature in the liquid vapour equilibrium and the limiting corresponding partial molar properties that can permit us to estimate the boiling points of the pure components.  相似文献   

4.
Calculation of excess properties in N,N-dimethylacetamide + 2-methoxyethanol binary mixtures at (298.15, 308.15 and 318.15) K from experimental density, viscosity and sound velocity values were presented in previous work. Applications of these experimental values to test different correlation equations as well as their corresponding relative functions were also reported. Considering the quasi-equality between the Arrhenius activation energy Ea and the enthalpy of activation of viscous flow ΔH*, here we can define partial molar activation energy Ea1 and Ea2 for N,N-dimethylacetamide and 2-methoxyethanol, respectively, along with their individual contribution separately. Correlation between Arrhenius parameters reveals interesting Arrhenius temperature with a comparison to the vaporisation temperature in the liquid vapour equilibrium, and the limiting corresponding partial molar properties that can permit us to estimate the boiling points of the pure components.  相似文献   

5.
Excess properties calculated from the literature values of experimental density and viscosity in N,N-dimethylformamide (DMF) + 1,4-dioxane (DO) fluid binary mixtures (from 303.15 to 318.15) K can lead us to test the different correlation equations as well as their corresponding relative functions. Inspection of the Arrhenius activation energy Ea and the enthalpy of activation of viscous flow ?H* shows very close values; here we can define partial molar activation energy Ea1 and Ea2 for DMF and DO, respectively, along with their individual contribution separately. Correlation between the two Arrhenius parameters of viscosity in all compositions shows the existence of the primary distinct behaviours separated by particular mole fractions in DMF. In addition, we add that the correlation between Arrhenius parameters reveals interesting Arrhenius temperature (TA), which is closely related to the vaporisation temperature in the liquid–vapour equilibrium; moreover, the limiting corresponding partial molar properties allow us to estimate the boiling points of the pure components.  相似文献   

6.
7.
Excess quantities calculated from literature values of experimental density and viscosity in 1,2-dimethoxyethane + water binary systems (from 303.15 to 323.15 K) can lead us to test different correlation equations as well as their corresponding derivative properties. Inspection of the Arrhenius activation energy (Ea) and the enthalpy of activation of viscous flow (ΔH*) shows very close values; here, we can define partial molar activation energies Ea1 and Ea2 for 1,2-dimethoxyethane and water, respectively, along with their individual contribution separately. Correlation between the two Arrhenius parameters of viscosity in all compositions shows existence of main distinct interaction behaviours delimited by particular mole fractions in 1,2-dimethoxyethane. Moreover, we add that correlation between Arrhenius parameters reveals interesting Arrhenius temperature which is closely related to the vapourisation temperature in the liquid vapour equilibrium, and the limiting corresponding partial molar properties can permit us to estimate the boiling points of the pure components.  相似文献   

8.
Calculation of excess properties in N,N-dimethylacetamide + water binary mixtures at (298.15, 308.15 and 318.15) K from experimental density, viscosity and sound velocity values were presented in previous work. Applications of these experimental values to test different correlation equations as well as their corresponding relative functions were also reported. Considering the quasi-equality between the Arrhenius activation energy Ea and the enthalpy of activation of viscous flow ΔH*, here we can define partial molar activation energy Ea 1 and Ea 2 for N,N-dimethylacetamide and water respectively along with their individual contribution separately. Correlation between the two Arrhenius parameters of viscosity in all the domains of composition shows the existence of two main distinct behaviours separated by a stabilised structure in a short range of mole fraction in N,N-dimethylacetamide from 0.2 to 0.3. We add that correlation reveals interesting Arrhenius temperature which is closely related to the vapourisation temperature in the liquid vapour equilibrium.  相似文献   

9.
Excess molar volumes and viscosity deviations in N,N-dimethylacetamide?+?dimethylformamide binary mixtures at 298.15, 308.15 and 318.15?K were calculated from experimental density and viscosity data presented in the previous work. Here these experimental values were used to test the applicability of the correlative reduced RedlichKister equation and the recently proposed Herráez equation. Their correlation ability at different temperatures, and the use of different number of parameters, is discussed for the case of limited experimental data. These relative functions are important to reduce the effect of temperature and, consequently, to reveal the effects of different types of interactions. Limiting excess partial molar volumes at infinite dilution were deduced from different methods, parameters of molar Gibbs energy of activation of viscous flow against compositions were investigated. The results of these observations have been interpreted in terms of structural effects of the solvents. 1H-NMR studies of these mixtures are also reported.  相似文献   

10.
Density, viscosity, and surface tension of three binary liquid systems: ethanoic acid+nitrobenzene, propanoic acid+nitrobenzene, and butanoic acid+nitrobenzene have been determined at 25, 35, and 45°C, over the whole composition range. The excess molar volumes, viscosities, Gibbs energies for the activation of flow, and surface tension were evaluated and fitted to a Redlich-Kister type of equation. The Grunberg-Nissan parameter d was also calculated. Binary viscosity data were fitted to the models of McAllister, Heric, Krishnan, and Laddha, Auslander, and Teja and Rice. Surface tension data were fitted to the models of Zihao and Jufu, Rice, and Teja, and an empirical two-constant model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号