首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Densities, viscosities, refractive indices, and surface tensions of the ternary system (2-propanol + tetrahydropyran + 2,2,4-trimethylpentane) at T = 303.15 K and its constituent binary systems (2-propanol + tetrahydropyran, 2-propanol + 2,2,4-trimethylpentane, and tetrahydropyran + 2,2,4-trimethylpentane) at T = (293.15, 303.15, 313.15, and 323.15) K were measured at atmospheric pressure. Densities were determined using a vibrating-tube densimeter. Viscosities were measured with an automatic microviscometer based on the rolling-ball principle. Refractive indexes were measured using a digital Abbe-type refractometer. Surface tensions were determined by the Wilhelmy-plate method. From these data, excess molar volumes, deviations in viscosity, deviations in refractive index, and deviations in surface tension were calculated. The results for the binary and ternary systems were fitted to the Redlich–Kister equation and the variable-degree polynomials in terms of compositions, respectively. The experimental and calculated quantities are used to study the nature of mixing behaviour between mixture components.  相似文献   

2.
Vapor–liquid equilibrium (VLE) at 101.3 kPa have been determined for the ternary system ethanol + 2-butanone + 2,2,4-trimethylpentane (isooctane) and its constituent binary systems: ethanol + 2,2,4-trimethylpentane, ethanol + 2-butanone, and 2-butanone + 2,2,4-trimethylpentane. Minimum boiling azeotropes were observed for all these binary systems. No azeotropic behavior was found for the ternary system. Thermodynamic consistency tests were performed for all VLE data. The activity coefficients of the binary mixtures were satisfactorily correlated with the Wilson, NRTL, and UNIQUAC models. The models with their best-fitted binary parameters were used to predict the ternary vapor–liquid equilibrium.  相似文献   

3.
The values estimated from various mixing rules for the ultrasonic velocity, viscosity and refractive index have been compared with the respective values measured earlier at 293, 303, and 313?K over the entire mole fraction range of two binary mixtures of tetrahydrofuran (THF) with 1-propanol (1-p) and 2-propanol (2-p). There is an excellent agreement between the experimental values of ultrasonic velocity and of refractive index with the respective values obtained from the mixing rules. The mixing rules for viscosity provide values agreeing broadly with those obtained from experimental measurements. The relative merits and interrelations of these mixing rules are discussed.  相似文献   

4.
Vapour-liquid equilibrium data in the three binary 2,2,4-trimethylpentane + 2-methyl-1-propanol, 2-methyl-1-propanol + 4-methyl-2-pentanone, 2,2,4-trimethylpentane + 4-methyl-2-pentanone systems, and in the ternary 2,2,4-trimethylpentane + 2-methyl-1-propanol + 4-methyl-2-pentanone system are reported. The data were measured isothermally at 333.15, 348.15 and 364.15 K covering the pressure range 12-100 kPa. The binary vapour-liquid equilibrium data were correlated using the Wilson and NRTL equations by means of a robust algorithm for processing all isotherms together; resulting parameters were then used for calculation of phase behaviour in the ternary system and for subsequent comparison with experimental data.  相似文献   

5.
(Vapour + liquid) equilibrium data in the three binary (2-propanol + 2,2,4-trimethylpentane), (2-propanol + 2,4-dimethyl-3-pentanone), (2,2,4-trimethylpentane + 2,4-dimethyl-3-pentanone) systems, and in the ternary (2-propanol + 2,2,4-trimethylpentane + 2,4-dimethyl-3-pentanone) system are reported. The data were measured isothermally at (330.00 and 340.00) K covering the pressure range (8 to 70) kPa. The binary (vapour + liquid) equilibrium data were correlated using the Wilson and NRTL equations by means of a robust algorithm for processing all isotherms together; resulting parameters were then used for calculation of phase behaviour in the ternary system and for subsequent comparison with experimental data. Azeotropic behaviour of the (2-propanol + 2,2,4-trimethylpentane) system was evaluated together with all available published data.  相似文献   

6.
The vapour—liquid equilibrium data were measured for the binary systems 2-propanol—n-hexane at 328.21 K and 1-propanol—2,2,4-trimethylpentane at 328.37 K and 348.52 K by using the recirculation still proposed by Berro et al. (1975). The excess volumes for these systems were measured with an Anton Paar densimeter. The reduction of VLE data and analysis of experimental errors were performed. The NRTL temperature-dependence parameters were estimated. The measured VLE data and the activity coefficients were compared with the values predicted by the chemical-reticular group-contribution method (CRG) (Neau and Péneloux, 1979). For both systems satisfactory agreement was found. This proves that the CRG model can be used to predict the vapour—liquid equilibria of alcohol—alkane systems containing branched components.  相似文献   

7.
8.
Summary The excess surface tension of a large number of binary liquid mixtures has been correlated with their topological features quantified in terms of the molecular connectivity indices. The agreement between the calculated and experimental E values is reasonably well for all the mixtures. A simple correlation has also been proposed between E and molar excess volume (V E ) of a binary mixture. The correlation is quite useful in correlating E data even for the mixtures where either one or both the components are associated in the pure state and/or there is interaction between them.
Korrelation zwischen topologischen Gegebenheiten und Oberflächenspannung von binären flüssigen Mischungen
Zusammenfassung Die Exzeß-Oberflächenspannungen einer großen Anzahl von binären flüssigen Mischungen wurden mit der Topologie ihrer Komponenten in Form der molekularen Konnektivitätsindices korreliert. Die Übereinstimmung zwischen den E -Werten ist für alle Mischungen relativ gut. Es wurde ebenfalls eine einfache Korrelation zwischen E und den molaren Exzeß-Volumina (V E ) der binären Mischungen vorgeschlagen. Diese Korrelierung ist nützlich, um die E -Werte sogar dann für die Korrelation von Mischungen verwenden zu können, wenn entweder eine oder beide Komponenten im Reinzustand assoziiert sind und/oder eine Wechselwirkung zwischen ihnen besteht.
  相似文献   

9.
10.
《Fluid Phase Equilibria》2005,231(1):99-108
Isobaric vapor–liquid equilibrium (VLE) data were determined at the pressure of 101.3 kPa for binary and ternary systems composed of acetone, ethanol, and 2,2,4-trimethylpentane (isooctane). Minimum boiling azeotropes were found in the acetone + 2,2,4-trimethylpentane and ethanol + 2,2,4-trimethylpentane systems. Azeotropic behavior was not found for the ternary system. Thermodynamic consistency tests were performed for all VLE data. The activity coefficients of the binary mixtures were satisfactorily correlated as function of the mole fraction using the Wilson, NRTL, and UNIQUAC models. The models with their best-fitted parameters were used to predict the ternary vapor–liquid equilibrium. The Wilson model appears to yield the best prediction in boiling temperatures.  相似文献   

11.
Vapour pressures for 1-methoxy-2-propanol are reported as well as the vapour–liquid equilibrium data in the two binary 2-propanol + 1-methoxy-2-propanol, and diisopropyl ether + 1-methoxy-2-propanol systems, and in the ternary 2-propanol + diisopropyl ether + 1-methoxy-2-propanol system. The data were measured isothermally at 330.00 and 340.00 K covering the pressure range 5–98 kPa. The binary vapour–liquid equilibrium data were correlated using the Wilson, NRTL, and Redlich–Kister equations; resulting parameters were then used for calculation of phase behaviour in the ternary system and for subsequent comparison with experimental data.  相似文献   

12.
The density and surface tension of 1-ethyl-3-methylimidazolium methylsulphate, [EMIM][CH3SO4] ionic liquid have been measured from (283.15 to 333.15) K. The coefficient of thermal expansion was calculated from the experimental density results using an empirical correlation for T = (283.15-338.15) K. Molecular volume and standard entropies of [EMIM][CH3SO4] ionic liquid were obtained from the experimental density values. The surface properties, critical temperature and enthalpy of vaporization were also discussed. Density and surface tension have been measured over the whole composition range for [EMIM][CH3SO4] with alcohols (methanol, ethanol, 1-butanol) binary systems at 298.15 K and atmospheric pressure. Excess molar volumes and surface tension deviations for the binary systems have been calculated and were fitted to a Redlich-Kister equation to determine the fitting parameters and the root mean square deviations.  相似文献   

13.
Densities and speeds of sound of the cyclopentane with 2-propanol, 1-butanol and 2-butanol are measured over the whole composition range at different temperatures in the range 288.15–308.15 K and atmospheric pressure using Anton Paar DSA 5000 densimeter. The experimental densities and speeds of sound have been used to calculate excess molar volumes, excess molar isentropic compressibilities and excess intermolecular free length. The partial molar volumes and apparent molar volumes at infinite dilution have also been calculated. The mixing quantities like (∂V mE/∂T)P and (∂H mE/∂P)T have been calculated at T = 298.15 K and these values are compared with the values calculated from Flory’s theory at equimolar composition.  相似文献   

14.
Excess molar volume, changes of refractive index, and surface tension deviations of binary mixtures of 1,2-ethanediol+1-propanol or 1-butanol have been determined at 293.15, 298.15, 303.15, and 308.15 K. The experimental data of refractive indices and surface tensions were compared with those predicted by different empirical expressions.  相似文献   

15.
16.
Vapour–liquid equilibrium data are reported for the ternary tert-butyl methyl ether+tert-butanol+2,2,4-trimethylpentane and the three binary tert-butyl methyl ether+tert-butanol, tert-butyl methyl ether+2,2,4-trimethylpentane, tert-butanol+2,2,4-trimethylpentane subsystems. The data were measured isothermally at 318.13, 328.20, and 339.28 K covering pressure range 15–100 kPa. Azeotropic data are presented for the tert-butanol+2,2,4-trimethylpentane system. Molar excess volumes at 298.15 K are given for the three binary systems. The binary vapour–liquid equilibrium data were correlated using Wilson, NRTL, and Redlich–Kister equations; the parameters obtained were used for calculation of phase behaviour in ternary system and for subsequent comparison with experimental data.  相似文献   

17.
Vapor—liquid equilibrium data are presented for the ternary system 1-propanol-acetonitrile-benzene, at 45°C. The experimental vapor—liquid equilibrium results of the three constituent binary systems are well reproduced with the UNIQUAC associated-solution model and the ternary results are compared with those calculated from the model with binary parameters alone. Ternary prediction of liquid—liquid equilibria is given for the 1-propanol-acetonitrile-n-hexane and 1-propanol—acetonitrile-n-heptane systems at 25°C.  相似文献   

18.
Biosurfactants made by fermentation from renewable resources provide “environmental friendly” processes and products. A natural sophorolipid mixture was produced by the yeast Candida bombicola when cultured on glucose and oleic acid. The sophorolipid mixture was chemically modified to form the corresponding sophorolipid alkyl (methyl, ethyl, propyl, and butyl) esters by reaction with the corresponding sodium alkoxides. Interfacial properties of these surfactants, such as surface tension reduction, aggregation, and adsorption, were systematically studied. It was found that the critical micelle concentration of sophorolipid esters decreases to about 1/2 per additional one CH2 group to the alkyl ester moiety. Interestingly, these surfactants were found to adsorb strongly on alumina but weakly on silica. They have properties that make them attractive candidates for uses in detergents, cosmetics, soil remediation, and enhanced oil recovery.  相似文献   

19.
20.
Densities (ρ) at different temperatures from 303.15 to 318.15 K, speeds of sound (u) and viscosities (η) at 303.15 K were measured for the binary mixtures of cyclohexanol with 2-chlorotoluene, 3-chlorotoluene and 4-chlorotoluene over the entire range of composition. The excess volumes (VE) for the mixtures have been computed from the experimental density data. Further, the deviation in isentropic compressibilities (Δκs) and deviation in viscosities (Δη) for the binary mixtures have been calculated from the speed of sound and viscosity data, respectively. The VE values and Δκs values were positive and Δη data were negative for all the mixtures over the whole range of composition at the measured temperatures. The calculated excess functions VE, Δκs and Δη were fitted to Redlich–Kister equation. The excess functions have been discussed in terms of molecular interactions between component molecules of the binary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号