首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solubility of phthalic anhydride was measured at 283–313 K under atmospheric pressure in ethyl acetate, n-propyl acetate, methyl acetate, acetone, 1,4-dioxane, n-hexane, n-butyl acetate, cyclohexane, and dichloromethane. The solubility of phthalic anhydride in all solvents increased with the increasing temperature. The Van’t Hoff equation, modified Apelblat equation, λh equation, and Wilson model were used to correlate the experimental solubility data. The standard dissolution enthalpy, the standard entropy, and the standard Gibbs energy were evaluated based on the Van’t Hoff analysis. The experimental data and model parameters would be useful for optimizing of the separation processes involving phthalic anhydride.  相似文献   

2.
Nitroxynil(NIT) is a commonly used anti-liver fluke drug for cattle and sheep, Its solubility is closely related to its preparation. In this work, the molar solubility of NIT in nine pure solvents (methanol, ethanol, 1,2-propanediolethyl, isopropanol, ethyl acetate, acetonitrile, n-butanol, phemethylol) and two kinds of binary mixtures with different ratio(ethanol + phemethylol; ethanol + acetonitrile) was determined by shake flask method over the temperature from 278.15 ~ 323.15 K at atmosphere pressure. Results show that the solubility of NIT in all tested solvents was increased with raised temperature. In mono-solvents, the mole fraction solubility of NIT was highest in phemethylol and the solubility order is: phemethylol > acetonitrile > ethyl acetate > methanol > n-butanol > ethanol > 1,2-propanediolethyl > isopropanol > water. In binary solvents, the mole fraction solubility increased with increasing ratio of phemethylol/acetonitrile. In mono-solvents, the modified Apelblat equation, λh equation, Van't Hoff model were applied to correlate the solubility data. In binary solvents, the modified Apelblat equation, λh equation, GSM model and Jouyban-Acree model were to correlate the solubility data. Solubility order of NIT in nine pure solvent and two binary solvent systems were analysed by using the Hansen solubility parameter (HSP). Activity coefficient was to access the solute–solvent molecular interactions. In addition, the dissolution of NIT is an endothermic and entropy-friendly process, since thermodynamic parameters such as enthalpy, entropy, and apparent standard Gibbs free energy are all greater than zero. The results will supply some essential data on recrystallization process, purification and formulation development of NIT in pharmaceutical applications.  相似文献   

3.
Experimental solubility of deferiprone (DFP) in N-methyl-2-pyrrolidone (NMP) + ethanol (EtOH) mixtures at 293.2, 298.2, 303.2 and 308.2 K was determined and mathematically represented using various models. The trained versions of the van’t Hoff equation, its combined version with log-linear model, Jouyban–Acree model and a combination of van’t Hoff + Jouyban–Acree model were reported to simulate DFP solubility in the binary mixture compositions at various temperatures. The mean percentage deviation (MPD) was used as an accuracy criterion. The obtained overall MPDs for back-calculated and predicted solubility of DFP in NMP + EtOH mixtures varied from 1.1% to 3.2% and 2.6% to 6.6%, respectively. Some of apparent thermodynamic quantities for the dissolution processes of DFP are also reported.  相似文献   

4.
The solubilities of R-(+)-2-(4-hydroxyphenoxy) propanic acid in acetone, ethyl acetate, acetonitrile, glycol ether, DMF, MIBK, n-butyl alcohol, THF and pyridine were measured at temperatures ranging from 273.15 K to 323.15 K at atmospheric pressure using a laser detecting system. First, the solubility data of R-(+)-2-(4-hydroxyphenoxy) propanic acid in selected solution were compared by the solubility parameter. Then, the solubility data were correlated by the Buchowski–Ksiazczak λh equation and modified Apelblat equation. Compared with the Apelblat equation, the Buchowski–Ksiazczak λh equation can fit the solubility data well. The dissolution enthalpy, entropy and Gibbs free energy of R-(+)-2-(4-hydroxyphenoxy) propanic acid were predicted by the van’t Hoff and Gibbs equation.  相似文献   

5.
The solubility data of tetranitroglycoluril in acetone, methanol, ethanol, ethyl acetate, nitromethane and chloroform at temperatures ranging from 295–318 K were measured by gravimetric method. The solubility data of tetranitroglycoluril were fitted with Apelblat semiempirical equation. The dissolution enthalpy, entropy and Gibbs energy of tetranitroglycoluril were calculated using the Van’t Hoff and Gibbs equations. The results showed that the Apelblat semiempirical equation was significantly correlated with solubility data. The dissolving process was endothermic, entropy-driven, and nonspontaneous.  相似文献   

6.
Solubility data were measured for omeprazole sulfide in ethanol, 95 mass-% ethanol, ethyl acetate, isopropanol, methanol, acetone, n-butanol and n-propanol in the temperature range from 280.35 to 319.65 K by employing the gravimetric method. The solubilities increase with temperature and they are in good agreement with the calculated solubility of the modified Apelblat equation and the λh equation. The experimental solubility and correlation equation in this work can be used as essential data and model in the purification process of omeprazole sulfide. The thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated using the van’t Hoff equation.  相似文献   

7.
The solubility of hexamethylene bis(methylcarbamate) in water, dimethylcarbonate, ethanol, ethyl acetate and toluene was measured using a dynamic method at temperatures ranging from 293.15 to 333.15 K. A laser detecting system was used to monitor the disappearance of solid hexamethylene bis(methylcarbamate) in a solid + liquid mixture. The effects of solvents and temperature on the solubility of hexamethylene bis(methylcarbamate) are discussed. The solubility data of hexamethylene bis(methylcarbamate) were fitted using Apelblat’s semi-empirical equation. The dissolution enthalpy, entropy and Gibbs energy of hexamethylene bis(methylcarbamate) were calculated using the van’t Hoff equation and the Gibbs equation. The results show that Apelblat’s semi-empirical equation well correlated the solubility data. The dissolution process is endothermic, entropy driven and non-spontaneous.  相似文献   

8.
By the gravimetric method, the solubility of sorbic acid in eight solvents including ethanol, 2-propanol, methanol, 1-butanol, ethyl acetate, methyl tert-butyl ether, acetone and acetonitrile was determined over a temperature range from 285.15 to K at atmospheric pressure. For the temperature range investigated, the solubility of sorbic acid in the solvents increased with increasing temperature. The experimental values were correlated with the linear solvation energy relationship, modified Apelblat equation, λh equation, non-random two-liquid (NRTL) model, and Wilson model. On the other hand, the enthalpy, entropy and Gibbs free energy of dissolution were obtained from these solubility values by using the van’t Hoff and Gibbs equations. The excess enthalpy of solution was estimated on the basis of λh equation. Furthermore, the a priori predictive model COSMO-RS was employed to predict the solubility of sorbic acid in selected solvents and reasonable agreement with experimental values is achieved.  相似文献   

9.
Data on (solid + liquid) equilibrium of tylosin tartrate in {methanol + (ethanol, 1-propanol or 2-propanol)} solvents will provide essential support for industrial design and further theoretical studies. In this study, the solubility of tylosin tartrate in alcohol mixtures was measured over temperature range from (278.15 to 323.15) K under atmospheric pressure by a gravimetric method. From the experimental results, the solubility of tylosin tartrate in selected solvents noted above was found to increase with increasing temperature and mass fraction of methanol. The solubility data were correlated with the modified Apelblat equation, the λh equation and van’t Hoff equation. The results showed that the three equations agreed well with the experimental values, and that the modified Apelblat equation was more accurate than the λh equation and van’t Hoff equation. Further, the standard enthalpy, standard entropy and standard Gibbs free energy of solution of tylosin tartrate in mixed solvents were calculated according to solubility results, model parameters with modified Apelblat equation and van’t Hoff equation.  相似文献   

10.
In recent years we have focused our efforts on investigating various binary mixtures containing carbon dioxide to find the best candidate for CO2 capture and, therefore, for applications in the field of CCS and CCUS technologies. Continuing this project, the present study investigates the phase behavior of three binary systems containing carbon dioxide and different oxygenated compounds. Two thermodynamic models are examined for their ability to predict the phase behavior of these systems. The selected models are the well-known Peng–Robinson (PR) equation of state and the General Equation of State (GEOS), which is a generalization for all cubic equations of state with two, three, and four parameters, coupled with classical van der Waals mixing rules (two-parameter conventional mixing rule, 2PCMR). The carbon dioxide + ethyl acetate, carbon dioxide + 1,4-dioxane, and carbon dioxide + 1,2-dimethoxyethane binary systems were analyzed based on GEOS and PR equation of state models. The modeling approach is entirely predictive. Previously, it was proved that this approach was successful for members of the same homologous series. Unique sets of binary interaction parameters for each equation of state, determined for the carbon dioxide + 2-butanol binary model system, based on k12l12 method, were used to examine the three systems. It was shown that the models predict that CO2 solubility in the three substances increases globally in the order 1,4-dioxane, 1,2-dimethoxyethane, and ethyl acetate. CO2 solubility in 1,2-dimethoxyethane, 1.4-dioxane, and ethyl acetate reduces with increasing temperature for the same pressure, and increases with lowering temperature for the same pressure, indicating a physical dissolving process of CO2 in all three substances. However, CO2 solubility for the carbon dioxide + ether systems (1,4-dioxane, 1,2-dimethoxyethane) is better at low temperatures and pressures, and decreases with increasing pressures, leading to higher critical points for the mixtures. By contrast, the solubility of ethyl acetate in carbon dioxide is less dependent on temperatures and pressures, and the mixture has lower pressures critical points. In other words, the ethers offer better solubilization at low pressures; however, the ester has better overall miscibility in terms of lower critical pressures. Among the binary systems investigated, the 1,2-dimethoxyethane is the best solvent for CO2 absorption.  相似文献   

11.
The solubility of 4-(4-hydroxyphenyl)-2-butanone (raspberry ketone) in six pure solvents was experimentally determined at temperatures ranging from 283.15 to 313.15 K under the pressure 0.10 MPa by employing a gravimetrical method. The experimental results indicate that the solubility of raspberry ketone in all studied solvents is temperature dependent, a rise in temperature brings about an increase in solubility. The experimental solubility data of raspberry ketone in six pure solvents (acetone, ethanol, ethyl acetate, n-propyl alcohol, n-butyl alcohol, and distilled water) was correlated by using several commonly used thermodynamic models, including the Apelblat, van’t Hoff and λh equations. The results of the error analysis indicate that the van’t Hoff equation was able to give more accurate and reliable predictions of solubility with root-mean-square deviation less than 0.56%. Furthermore, the changes of dissolution enthalpies (Δdiss H°), dissolution entropies (Δdiss S°) and dissolution Gibbs energies (Δdiss G°) of raspberry ketone in the solvents studied were estimated by the van’t Hoff equation. The positive value of Δdiss H°, Δdiss S°, and Δdiss G° indicated that these dissolution processes of raspberry ketone in the solvents studied were all endothermic and enthalpy-driven.  相似文献   

12.
The solubility of valsartan in ethyl acetate + (butanone, isopropyl ether) binary solvent mixtures was measured at temperatures = 278.15–323.15 K and pressure = 0.1 MPa with a laser monitoring dynamic technique by a synthetic method. The experimental data were regressed by the modified Apelblat equation, the general single model and the hybrid model. The experimental data are well correlated with the above models because the mean deviations (MDs) are less than 3.79%. The mole fraction solubility of valsartan increases with increase in temperature and enrichment in butanone content, while it decreases with increased mole fraction of isopropyl ether at constant temperature. In addition, thermodynamic studies, including Gibbs energy, entropy and enthalpy, were calculated by van’t Hoff analysis. The results showed that the dissolution of valsartan in mixed solvents is endothermic, spontaneous and entropy-driven.  相似文献   

13.
The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven.  相似文献   

14.
The solubility of N-acetylglycine was measured in methanol, ethanol, propanol, isopropanol, n-butanol and ethyl formate in the temperature range between 278.15 and 319.15 K under atmospheric pressure by a gravimetric method. The solubility of N-acetylglycine in those selected solvents increases with increasing temperature. The solubility data were correlated with the van’t Hoff equation, the modified Apelblat equation and the λh equation to obtain the corresponding model parameters. The experimental results could be useful for optimizing the industrial process of purification of N-acetylglycine.  相似文献   

15.
Solubility of 2, 6-bis (4-hydroxybenzylidene) cyclohexanone (BHBC) in pure solvents such as 1,4-dioxane, methanol, 1-butanol, 1-propanol, ethyl acetate, acetone, tetrahydrofuran (THF), glacial acetic acid, dimethyl sulphoxide (DMSO) and binary solvents dimethyl formamide (DMF) and (1-Propanol + Tetrahydrofuran) were investigated by gravimetric method at different temperature range. The experiment solubility increases with increase in temperature in both pure and binary solvents. The Maximum solubility is found in DMF at 328.15 K and for binary solvent mixture i.e. 1-propanol and THF (0.9 mol fraction) it was maximum at 318.15 K. Further modified Apelblate and Buchowski-Ksiazczak models were used for the theoretical calculation of solubility of BHBC in pure as well binary solvents. A satisfactory correlation of these models with experimental data was observed. The solution thermodynamics parameters like enthalpies, Gibb's free energy of dissolution and entropy of solutions were calculated using Van't Hoff and Gibb's equation, which reveals the solvation mechanism is non-spontaneous and entropy driven.  相似文献   

16.
The standard changes in enthalpy during the solvation of 1,4-dioxane in methanol, ethyl acetate, DMF, and acetonitrile were determined from calorimetric data and compared with the literature data for a series of solvents with different polarities. The standard changes in the Gibbs energy during the solvation of 1,4-dioxane in a wide series of solvents were calculated from the activity coefficients reported in the literature. The variation of the solvation functions of low-polar 1,4-dioxane in the series of solvents was found to be consistent with the enthalpy-entropy compensation rule. The results for 1,4-dioxane were compared with those for its open-chain analog and related large cyclic molecules. The electrostatic interactions of the solute with the solvents did not markedly affect the thermodynamic characteristics of ether in media with different polarities, but affected the interaction of the solute with the solvent more significantly. The solvation of the small ring of 1,4-dioxane in aprotic solvents was accompanied by a more significant exothermal effect than in the case of its open-chain analog. The conclusion was drawn that the enthalpies of the formation of hydrogen bonds between 1,4-dioxane and the associated water and chloroform molecules in solution were smaller in magnitude than the bonds of the similar open-chain polyether.  相似文献   

17.
The melting properties and the heat capacity of the solid state and the melt state 4’-bromomethyl-2-cyanobiphenyl (OTBNBr) were determined. The enthalpy, entropy and Gibbs free energy of fusion were also calculated. The solubility of OTBNBr in eight organic solvents was experimentally measured at temperatures from (283.15 to 323.15) K by using a static method. The reasons for the differences of the solubility of OTBNBr in various solvents are discussed by using the intermolecular interaction. Furthermore, the experimental solubility values were well correlated by the modified Apelblat equation, the λh equation, the Wilson model and the van’t Hoff equation. Finally, the temperature dependence of the activity coefficient and the van’t Hoff enthalpy in the tested solutions was investigated and is discussed.  相似文献   

18.
Reaction of chlorine dioxide with phenol   总被引:1,自引:0,他引:1  
The kinetics of phenol oxidation with chlorine dioxide in different solvents (2-methylpropan-1-ol, ethanol, 1,4-dioxane, acetone, acetonitrile, ethyl acetate, dichloromethane, heptane, tetrachloromethane, water) was studied by spectrophotometry. In all solvents indicated, the reaction rate is described by an equation of the second order w = k[PhOH]·[ClO2]. The rate constants were measured (at 10—60 °C), and the activation parameters of oxidation were determined. The reaction rate constant depends on the solvent nature. The oxidation products are a mixture of p-benzoquinone, 2-chloro-p-benzoquinone, and diphenoquinone.  相似文献   

19.
In this paper, we focused on solubility and solution thermodynamics of dibenzothiophene. By the gravimetric method, the solubility of dibenzothiophene was measured in (methanol + acetonitrile) binary solvent mixtures at temperatures from (278.15 to 333.15) K under atmosphere pressure. The solubility data were fitted using a modified Apelblat equation, a variant of the combined nearly ideal binary solvent/Redich–Kister (CNIBS/R–K) model and Jouyban–Acree model. Computational results showed that the modified Apelblat equation was superior to the other two equations. In addition, the thermodynamic properties of the solution process, including the Gibbs free energy, enthalpy, and entropy, were calculated by the van’t Hoff analysis. The experimental results showed that methanol could be used as effective anti-solvents in the crystallization process.  相似文献   

20.
The solubility of bosentan (BST) in the aqueous mixtures of polyethylene glycol 200 (PEG 200) at the temperature range, = (293.15–313.15) K, has been studied using a shake-flask method. The experimental solubility data were correlated with Jouyban–Acree, Jouyban-Acree-van’t Hoff, modified Wilson and Yalkowsky models. Deviations of the calculated solubility from experimental one were determined by percent average relative deviations and relative deviations. In addition, to represent the thermodynamic behaviour of BST in PEG 200 solutions, the apparent thermodynamic functions, Gibbs energy, enthalpy and entropy of dissolution were obtained by using the van’t Hoff and Gibbs equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号