首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A combined numerical method, based on the successive calculation of the flow regions near the blunt leading edge and center of a wing, is proposed on the assumption that the angle of attack and the relative thickness and bluntness radius of the leading edge are small. The flow in the neighborhood of the leading edge of the wing is assumed to be identical to that on the windward surface of a slender body coinciding in shape with the surface of the blunt nose of the wing and is numerically determined in accordance with [1]. The flow parameters near the center of the wing are calculated within the framework of the law of plane sections [2]. In both regions the equations of motion of the gas are integrated by the Godunov method. The flow fields around elliptic cones are obtained within the framework of the combined method and the method of [3], A comparative analysis of the results of the calculations makes it possible to estimate the region of applicability of the method proposed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 159–164, January–February, 1989.The authors wish to express their gratitude to A. A. Gladkov for discussing their work, and to G. P. Voskresenskii, O. V. Ivanov, and V. A. Stebunov for making available a program for calculating supersonic flow over a wing with a detached shock.  相似文献   

2.
A numerical method is described for the calculation of supersonic flow over the arbitrary upper surface of a delta wing in the expansion region. The shock wave must be attached everywhere to the leading edge of this wing from the side of the lower surface. The stream flowing over the wing is assumed to be nonviscous. A problem with initial conditions at some plane and with boundary conditions at the wing surface and the characteristic surface is set up for the nonlinear system of equations of gas dynamics. The difference system of equations, which approximates the original system of differential equations on a grid, has a second order of accuracy and is solved by the iteration system proposed in [1]. The initial conditions are determined by the method of establishment of self-similar flow. A number of examples are considered. Comparison is made with the solutions of other authors and with experiment.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 76–81, November–December, 1973.The author thanks A. S. II'ina who conducted the calculations and V. S. Tatarenchik for advice.  相似文献   

3.
The effect of unsteady injection and wall temperature variation on the parameters of the viscous shock layer near the stagnation line of a wing of infinite span at an angle of slip is investigated on the basis of the viscous shock layer model. An analytic solution of the nonstationary problem, valid near the surface of the wing for strong injection, is obtained. A numerical investigation is carried out and some results of calculating the unsteady viscous shock layer equations for various forms of the time dependence of the injection velocity and wing surface temperature are presented. The calculations are based on a finite-difference method of the second order of approximation in the space variable and the first order of approximation in time, which makes use of expression of the equations in divergence form, Newtonian linearization and vector sweeps across the shock layer. In the steady-state case the results of the calculations are in good agreement with the data of [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 90–95, January–February, 1988.  相似文献   

4.
In formulating the problem we make no assumption of smallness of the angle of attack; the attached three-dimensional compression shock which arises under the lower surface of the wing may be of arbitrary intensity, and in form is assumed to differ little from a plane shock; a finite yaw angle is allowed. We consider linear supersonic conical flow which is realized, with the exception of a characteristic linear dimension, in the portion of space bounded by the shock, the plane of the wing, and the surface of a disturbance cone with vertex at the discontinuity of the supersonic leading edge and which is a disturbance of the uniform flow behind the plane shock wave.The problem studied reduces to the homogeneous Hilbert boundary-value problem for an analytic function of a complex variable, whose real and imaginary parts are the partial derivatives of the unknown pressure disturbance with respect to the similarity coordinates.In the solution of the boundary-value problem, the effective method of Lighthill, developed with application to diffraction problems [1, 2], is generalized to the problem of an asymmetric region.The particular case of hypersonic flow about an unyawed triangular wing has been studied by Malmuth [3]; the author obtains the problem considered by Lighthill in [2] and writes out the solution contained in that work.  相似文献   

5.
In a formulation analogous to [1–3], a study is made of the flow of a uniform homogeneous hypersonic ideal gas over the windward side of a slender wing whose surface profile depends on the time. The problem is solved by the thin shock layer method [4]. The bow shock is assumed to be attached to the leading edge of the wing at at least one point. The corrections of the first approximation to the main Newtonian flow are found. For wings of finite aspect ratio, when the bow shock is attached along the whole of the leading edge of the wing, computational formulas are obtained for determining the parameters of the gas in the shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 94–101, July–August, 1979.  相似文献   

6.
Within the framework of the theory of a hypersonic viscous shock layer a study is made of flow round wings of infinite span with blunt leading edges at various angles of attack and slip. Account is taken of multicomponent diffusion, and homogeneous chemical reactions, including dissociation-recombination reactions and exchange reactions. On the shock wave the generalized Rankine-Hugoniot conditions are given, and on the surface of the body conditions which allow for heterogeneous catalytic reactions of the first order with reaction rate constants depending [1] or not depending [2] on the temperature. The cases of an ideally catalytic and a noncatalytic surface are also considered. The surface of the body is assumed to be heatinsulated. A numerical study was made of the problem in a broad range of variation in the angles of attack and slip for different cases of prescribed constants representing the rates of the heterogeneous reactions. The conditions of the flow corresponded to the motion of a body which possess a lifting force along the trajectory of entry into the Earth's atmosphere [3]. The dependences are given of the equilibrium temperature of the surface along the stagnation line of the wing on the height of the flight and the distribution of this temperature along the surface of wings with parabolic and hyperbolic contours. It is shown that for flow regimes with a relatively high degree of dissociation in cases when the proportion of atoms recombined on the surface of the body is small, the dependences of the heat flow and the temperature of the surface on the angle of slip are of a nonmonotonic nature.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza., No. 6, pp. 127–135, November–December, 1984.  相似文献   

7.
In the framework of the theory of a hypersonic viscous shock layer [1] with modified Rankine-Hugoniot relations [2] at the shock wave a study is made of flow past wings of infinite span with a rounded leading edge. A numerical solution to the problem has been obtained in a wide range of variation of the Reynolds number (5–106), the blowing-suction parameter, the angle of attack (0–45 °), and the angle of slip (0–70 °). Data are given on the influence of the angle of slip on the profiles of the temperature and the velocity across the shock layer. A study is made of the dependence of the distributions of the pressure, the heat flux, and the friction coefficients along the surface of the body on the blowing-suction parameter and the angles of attack and slip.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 104–108, March–April, 1984.  相似文献   

8.
The problem of irrotational flow past a wing of finite thickness and finite span can be reduced by Green's formula to the solution of a system of Fredholm equations of the second kind on the surface of the wing [1]. The wake vortex sheet is represented by a free vortex surface. Besides panel methods (see, for example, [2]) there are also methods of approximate solution of this problem based on a preliminary discretization of the solution along the span of the wing in which the two-dimensional integral equations are reduced to a system of one-dimensional integral equations [1], for which numerical methods of solution have already been developed [3–6]. At the same time, a discretization is also realized for the wake vortex sheet along the span of the wing. In the present paper, this idea of numerical solution of the problem of irrotational flow past a wing of finite span is realized on the basis of an approximation of the unknown functions which is piecewise linear along the span. The wake vortex sheet is represented by vortex filaments [7] in the nonlinear problem. In the linear problem, the sheet is represented both by vortex filaments and by a vortex surface. Examples are given of an aerodynamic calculation for sweptback wings of finite thickness with a constriction, and the results of the calculation are also compared with experimental results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 124–131, October–December, 1981.  相似文献   

9.
In the framework of the locally self-similar approximation of the Navier-Stokes equations an investigation is made of the flow of homogeneous gas in a hypersonic viscous shock layer, including the transition region through the shock wave, on wings of infinite span with rounded leading edge. The neighborhood of the stagnation line is considered. The boundary conditions, which take into account blowing or suction of gas, are specified on the surface of the body and in the undisturbed flow. A method of numerical solution of the problem proposed by Gershbein and Kolesnikov [1] and generalized to the case of flow past wings at different angles of slip is used. A solution to the problem is found in a wide range of variation of the Reynolds numbers, the blowing (suction) parameter, and the angle of slip. Flow past wings with rounded leading edge at different angles of slip has been investigated earlier only in the framework of the boundary layer equations (see, for example, [2], which gives a brief review of early studies) or a hypersonic viscous shock layer [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 150–154, May–June, 1984.  相似文献   

10.
The axisymmetric interaction between a supersonic jet with a finite expansion ratio and a barrier is accompanied by the formation of complex sub- and supersonic flow in a shock layer whose thickness depends on the parameters of the jet and the position of the barrier. The main relationships of the interaction process have been established experimentally ([1–3] and others) and individual results of numerical calculations of such flows are known [4]. An analytical investigation of the parameters in the shock layer formed ahead of a plane barrier when an underexpanded jet impinges on it is presented below. The results of [5], where the region near the axis of a shock layer of arbitrary thickness is analyzed within the framework of a model of flow with a constant density, is placed at the basis of the analysis.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 63–70, September–October, 1978.The author thanks Yu. M. Tsirkunov for useful discussions.  相似文献   

11.
The authors consider the problem of supersonic unsteady flow of an inviscid stream containing shock waves round blunt shaped bodies. Various approaches are possible for solving this problem. The parameters in the shock layer on the axis of symmetry have been determined in [1, 2] by using one-dimensional theory. The authors of [3, 4] studied shock wave diffraction on a moving end plane and wedge, respectively, by the through calculation method. This method for studying flow around a wedge with attached shock was also used in [5]. But that study, unlike [4], used self-similar variables, and so was able to obtain a clearer picture of the interaction. The present study gives results of research into the diffraction of a plane shock wave on a body in supersonic motion with the separation of a bow shock. The solution to the problem was based on the grid characteristic method [6], which has been used successfully to solve steady and unsteady problems [7–10]. However a modification of the method was developed in order to improve the calculation of flows with internal discontinuities; this consisted of adopting the velocity of sound and entropy in place of enthalpy and pressure as the unknown thermodynamic parameters. Numerical calculations have shown how effective this procedure is in solving the present problem. The results are given for flow round bodies with spherical and flat (end plane) ends for various different values of the velocities of the bodies and the shock waves intersected by them. The collision and overtaking interactions are considered, and there is a comparison with the experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 141–147, September–October, 1984.  相似文献   

12.
A complex shock configuration with two triple points can occur during the interaction between an external oblique compression shock and the detached shock ahead of a blunt body (for instance, ahead of a wing or stabilizer edge). This results in the formation of a high-pressure, low-entropy supersonic gas jet [1–6]. Here two flow modes are possible [1], which differ substantially in the intensity of the thermal and dynamic effects of the stream on the blunt body: mode I corresponds to the impact of a supersonic jet [2–6], while the supersonic jet in mode II does not reach the body surface in the domain of shock interaction because of curvature under the effect of a pressure drop. Conditions for the realization of the above-mentioned flow modes are investigated experimentally and theoretically, and an approximate method is proposed to determine the magnitude of the compression shock standoff in the interaction domain. Blunt bodies with plane and cylindrical leading edges are examined. The results of a computation agree satisfactorily with experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 97–103, January–February, 1976.The author is grateful to V. V. Lunev for discussing the research and for useful remarks.  相似文献   

13.
Lifting wings that only slightly disturb the supersonic gas flow are considered. The plan shape and thickness distribution of the wing and the free-stream parameters are given. The flow problem is solved within the framework of the Prandtl model. The outer potential flow is determined in accordance with the linear theory. The turbulent boundary layer is found by the method of plane sections with allowance for the three-dimensional inviscid flow pattern. A numerical model of the flow is constructed in the class of piecewise-constant functions on characteristic calculation grids [1]. The variational problem of finding the weakly curved middle surface of the wing giving maximum aerodynamic quality is reduced, by analogy with [2], to a problem of nonlinear programming and is solved by the gradient projection method.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 165–168, July–August, 1991.  相似文献   

14.
We consider the direct problem in the theory of the axisymmetric Laval nozzle (including sonic transition) for the steady flow of an inviscid and nonheat-conducting gas of finite electrical conductivity. The problem is solved by numerical integration of the equations of unsteady gas flow using an explicit difference scheme that was proposed by Godunov [1,2], and was used to calculate steady and unsteady flows of a nonconducting gas in nozzles by Ivanov and Kraiko [3]. The subsonic and the supersonic flows of a conducting gas in an axisymmetric channel when there is no external electric field, the magnetic field is meridional, and the magnetic Reynolds numbers are small have previously been completely investigated. Thus, Kheins, Ioller and Élers [4] investigated experimentally and theoretically the flow of a conducting gas in a cylindrical pipe when there is interaction between the flow and the magnetic field of a loop current that is coaxial with the pipe. Two different approaches were used in the theoretical analysis in [4]: linearization with respect to the parameter S of the magnetogasdynamic interaction and numerical calculation by the method of characteristics. The first approach was used for weakly perturbed subsonic and supersonic flows and the solutions obtained in analytic form hold only for small S. This is the approach used by Bam-Zelikovich [5] to investigate subsonic and supersonic jet flows through a current loop. The numerical calculations of supersonic flows in a cylindrical pipe in [4] were restricted to comparatively small values of S since, as S increases, shock waves and subsonic waves appear in the flow. Katskova and Chushkin [6] used the method of characteristics to calculate the flow of the type in the supersonic part of an axisymmetric nozzle with a point of inflection. The flow at the entrance to the section of the nozzle under consideration was supersonic and uniform, while the magnetic field was assumed to be constant and parallel to the axis of symmetry. The plane case was also studied in [6]. The solution of the direct problem is the subject of a paper by Brushlinskii, Gerlakh, and Morozov [7], who considered the flow of an electrically conducting gas between two coaxial electrodes of given shape. There was no applied magnetic field, and the induced magnetic field was in the direction perpendicular to the meridional plane. The problem was solved numerically in [7] using a standard process. However, the boundary conditions adopted, which were chosen largely to simplify the calculations, and the accuracy achieved only allowed the authors [7] to make reliable judgments about the qualitative features of the flow. Recently, in addition to [7], several papers have been published [8–10] in which the authors used a similar approach to solve the direct problem in the theory of the Laval nozzle (in the case of a nonconducting gas).Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza., No. 5, pp. 14–20, September–October, 1971.In conclusion the author wishes to thank M. Ya. Ivanov, who kindly made available his program for calculating the flow of a conducting gas, and also A. B. Vatazhin and A. N. Kraiko for useful advice.  相似文献   

15.
In calculating the flow about bodies with plane surfaces and sharp edges it is assumed that in the flow regimes with attached shock the latter may be defined in a section normal to the edge from the corresponding relations for the wedge [1, 2], The solution is taken corresponding to a weak shock on a wedge with supersonic velocity behind it. While in the plane case (wedge) this solution will be the only physically realizable solution, in the case of three-dimensional bodies, when there is a slip velocity along the leading edge, the realization of a second wedge solution with a strong shock is conceivable in the section normal to the leading edge if the total velocity behind the shock (with account for the slip velocity along the edge) is supersonic [3].Relative to the undisturbed stream velocity both of these solutions correspond to a weak shock. We present an example when the solution with a strong shock in the section normal to the edge is possible.  相似文献   

16.
In recent years a considerable number of studies have been published on flow around wings at high supersonic velocities. The researches have been conducted in two directions: there are studies of hypersonic flow around wings of traditional shape and a search is carried out for new types of lay-out which possess optimal aerodynamic characteristics. The second direction relates to the numerous studies of flow around wings with shaped transverse cross sections [1–7]. The calculation of the aerodynamic quality of a shaped delta wing composed of plane surfaces on the basis of the relationships on an oblique shock [1, 2], from the results of experiments on the pressure distribution and from weight tests [3, 4], showed that the shaped wing has a higher quality than the plane delta wing.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 171–175, January–February, 1985.  相似文献   

17.
A large number of papers, generalized and classified in [1, 2], have been devoted to unsteady gas flows arising in shock wave interaction. Experimental results [3–5] and theoretical analysis [6–9] indicate that the most interesting and least studied types of interaction arise in cases when there are several shock waves. At the same time, nonlinear effects, which depend largely on the nature of the shock wave intersections, become appreciable. Regions of existence of different types, of plane shock wave intersections have been analyzed in [10–13]. It has been shown that in a number of cases the simultaneous existence of different types of intersections is possible. The aim of the present paper is to study unsteady shock wave intersections in the framework of a numerical solution of the axisymmetric boundary-value problem that arises in the diffraction of a plane shock wave on a cone in a supersonic gas flow. Flow regimes that augment the experimental data of [3–5] and the theoretical analysis of [9] are considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 134–140, September–October, 1986.  相似文献   

18.
We study the hypersonic flow of an inviscid ideal gas past a delta wing of small aspect ratio at a finite angle of attack. Increasing the Mach number M of the approaching flow to infinity for a constant geometric parameter characterizing the stream disturbance (for example, the body relative thickness or angle of attack), we obtain the limiting hypersonic flow pattern about the body, when the very strong compression shock approaches close to the body, forming a thin compressed layer of disturbed gas flow. Such a flow may be studied using the method of the small parameter, which characterizes the density ratio across the compression shock [1, 2].In [3,4] an analysis is made of the flow past conical wings whose aspect ratio is of order unity. In this case the compression shock will be attached to the leading edge. In [5] a study is made of the flow past wings of small aspect ratio which diminishes along with the small parameter in such a way that the wing half-apex angle has the same order of magnitude as the Mach cone angle within the compressed layer.In this case the angle of attack remains finite (of order unity) so that as M the hypersonic law of plane sections for slender bodies at large angles of attack [6] is satisfied, which together with the additional limit passage0 leads to the similarity law established in [5]. In this case both the case of the detached shock (when the similarity parameter <2), considered in [5, 7], and the case of the attached compression shock (>2) are possible.The monograph [2] reproduces the results of these studies with certain extensions, and also considers the direct problem of flow past a flat delta plate with attached shock, whose solution was found to contain several singular points which require further investigation.In the present study, considering the inverse problem, we were able to construct a closed pattern of the flow past wings of a certain class with thickness and with an attached compression shock, where the field of the gas-dynamic parameters and the shape of the wing surface and of the shock wave are everywhere continuous and do not contain any singular points with the exception of the known thin entropy layer near the stagnation point, which shows up only in the higher approximations [2, 4].In conclusion I would like to thank V. V. Sychev and V. Ya. Neiland for discussions of the subject and of the results, and I would also like to thank V. P. Kolgan for assistance in making the calculations.  相似文献   

19.
Several theoretical and experimental studies have been devoted to the problem of the nonstationary action of the stream behind a shock wave on bodies of varied shape. In particular, in [1], the pressure and density are calculated for flow about bodies of the more typical shapes in the initial stage of the process. The basic relations which accompany the interaction of shock waves are considered in [2, 3]. The analysis of the phenomena of diffraction of shock waves on the sphere, cylinder, and cone is presented in [4]. Problems of unsteady flow about a wing are examined in [5, 6]. A detailed review of the foreign studies on unsteady flow is given in [7]. Of great practical interest is the question of the time for flow formation and the magnitudes of the unsteady loads during this period. Experimental investigations have been made recently [8, 9] in which some criteria are presented for estimating the bow shock formation time for supersonic flow about the sphere and cylinder with flat blunting. However the question of the formation time of the stationary pressure on the body surface is not referred to in these studies and no relationship is shown between the transient position of the reflected wave and the corresponding unsteady pressure on the surface. Moreover, in [8] the dimensionless time criterion is determined very approximately, independently of the Mach number of the shock wave. The present study was undertaken with the object of determining the basic criteria which characterize unsteady flow about bodies behind a plane shock wave which has time-independent parameters, and clarification of the shock wave reflected from the body and the pressure on the surface of the body during the transient period. The most typical body shapes were studied: 1) a cylinder with flat face aligned with the stream; 2) a spherically-blunted cylinder; and 3) a cylinder transverse to the stream. The experiments were conducted in a conventional shock tube using the single-diaphragm scheme. The measurements of the pressure on the models and the velocity of the incident shock wave were made using the technique analogous to that of [10, 11]. A highspeed movie camera was used to record the pattern of the wave diffraction on the body. The Mach number of the incident shock wave varied in the range from M=1.5 to M≈6.0, which corresponded to a range of Mach numbers M of the stream behind the shock wave from 0.6 to 2.1. The calculations of the required gas dynamic parameters for high temperatures were made with account for equilibrium dissociation of the air on the basis of the data of [10, 12, 13]. The magnitude of the relative maximal shock wave standoff Δ at the stagnation point obtained in the present experiments was compared with the values of Δ from other studies. In the case of the flat-blunted cylinder it was in good agreement with the results of [8–14], and in the case of the spherically-blunted cylinder and the transverse cylinder it was in agreement with the results of [15].  相似文献   

20.
The results of Raizer [1], Hays [2], and Chernous'ko [3] are generalized to-the case of self-similar propagation of shock waves in a gas with exponentially varying density and constant pressure. A solution is found by the method of successive approximations. The zero-order approximation coincides with the Whitham method [4]. The first-order approximation is in good agreement with numerical calculations in [2]. The non-selfsimilar motion of a weak shock wave is investigated in the framework of linear theory.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 48–54, November–December, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号