首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Half-sandwich zirconium complex 3 containing tridentate carborane [S,S,O] ligand 2 [(HOC6H2R2-4,6)(CH2)SC(B10H10) C(Ph)2P=S, R=tBu] was synthesized by the reaction of CpZrCl3(Cp=η5-C5H5) with sodium salt of ligand 2. Zirconium complex 3 was characterized by elemental and NMR analyses. DFT calculations were also performed on complex 3 to analyze the stereochemistry. The results from DFT calculations indicate that structure S1, in which no sulfur atom bonds to the zirconium atom, exists at the lowest energy level. In the presence of methylaluminoxane(MAO), complex 3 exhibited good catalytic activities for ethylene polymerization and long life-time up to 10 h. Moreover, the complex 3/MAO system displayed excellent catalytic activities toword ethylene copolymerization with 1-hexene or polar olefins.  相似文献   

2.
The reactions of GeCl4, GeBr4, and MeGeCl3 with O-trimethylsilyl derivatives of N,N-disubstituted amides of 2-hydroxycarboxylic acids afforded pentacoordinate and hexacoordinate neutral (O,O)-mono- and (O,O)-bischelates. The reactions of glycolic acid derivatives with GeX4 produced bischelates X2Ge[OCH2C(O)NR2R3]2 7a,c,d (X = Cl, R2 = R3 = Me (a), (CH2)5 (c), (CH2CH2)2O (d)) and 8a (X = Br). By contrast, the reactions of lactic and mandelic acid derivatives with GeCl4 and MeGeCl3 gave monochelates Cl3Ge[OCH(R1)C(O)NR2R3] (S)-9a–c (R1 = Me) and Cl2MeGe[OCH(R1)C(O)NR2R3] 10a (R1 = H), (S)-11a,b (R1 = Me), and (S)-12a (R1 = Ph) (R2R3 = (CH2)4 (b)), respectively. According to the X-ray diffraction data, the Ge atom in bischelates 7c,d and 8a has a coordination number 6, and its coordination polyhedron can be described as a slightly distorted octahedron. In monochelates (S)-9a-c, 10a, (S)-11a,b, and (S)-12a, the Ge atom has a coordination number 5, and its coordination polyhedron can be described as a trigonal bipyramid with two halogen atoms or one halogen atom and one ethereal oxygen atom in equatorial positions and the halogen atom and the amide oxygen atom in the axial positions. The bonds in the axial positions are somewhat longer than the corresponding bonds in tetracoordinate Ge compounds.  相似文献   

3.
Protonation of the trimethylenemethane derivatives, Cp*Zr(σ2,π-C4H6)[N(R1)C(Me)N(R2)] (1a: R1=R2=i-Pr and 1b: R1=Et, R2=t-Bu) (Cp*=η5-C5Me5), by [PhNMe2H][B(C6F5)4] in chlorobenzene at −10 °C provides the cationic methallyl complexes, Cp*Zr(η3-C4H7)[N(R1)C(Me)N(R2)] (2a: R1=R2=i-Pr and 2b: R1=Et, R2=t-Bu), which are thermally robust in solution at elevated temperatures as determined by 1H NMR spectroscopy. Addition of B(C6F5)3 to 1a and 1b provides the zwitterionic allyl complexes, Cp*Zr{η3-CH2C[CH2B(C6F5)3]CH2}[N(R1)C(Me)N(R2)] (3a: R1=R2=i-Pr and 3b: R1=Et, R2=t-Bu). The crystal structures of 2b and 3a have been determined. Neither the cationic complexes 2 or the zwitterionic complexes 3 are active initiators for the Ziegler-Natta polymerization of ethylene and α-olefins.  相似文献   

4.
A series of ansa-metallocene complexes with an allyl substituted silane bridge [(CH2CHCH2)CH3Si(C5H4)2]TiCl2 (1), [(CH2CHCH2)CH3Si(C9H6)2]MCl2 [M=Ti (2), Zr (3), Hf (4)] and [(CH2CHCH2)CH3Si(C13H8)2]ZrCl2 (6) have been synthesized and characterized. The molecular structure of 6 has been determined by X-ray crystallographic analysis. Complexes 1-4, 6 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization in the presence of MMAO. The results showed that the self-immobilized catalysts 1-4, 6 kept high ethylene polymerization activities of ca. 106 g PE mol−1 M h−1 and high molecular weight (Mw≈105) of polyethylene.  相似文献   

5.
In this work, some phosphoramidothioates (PATs) with the general formula of (CH3O)2P(S)X and (CH3O)(CH3S)P(O)X, where, X = NH2 (1 & 6), NH(CH3) (2 & 7), N(CH3)2 (3 & 8), N(Et)2 (4 & 9), (CH3CH2O)2P(S)NH(CH3) (5) and (CH3CH2O)(CH3CH2S)P(O)NH(CH3) (10), were synthesized and characterized by 31P, 31P{1H}, 13C and 1H NMR spectroscopy. The ability of the compounds to inhibit AChE was predicted by PASS software (version 1.193). They were also experimentally evaluated by a modified Ellman??s assay. The structure-activity relationship (SAR) between IC50 and some physico-chemical properties such as lipophilicity (logP), electronic and steric effects of the compounds was studied. The logP values were experimentally determined by the shake-flask (gas chromatography) method. Inhibitory potency for the compounds 1?C10 was 1 (3.38 mM) > 2 (3.97 mM) > 3 (4.75 mM) > 4 (6.00 mM) > 5 (5.51 mM) > 6 (0.07 mM) > 7 (0.23 mM) > 8 (0.39 mM) > and 9 (0.55 mM) > 10 (0.51 mM), respectively. IC50 and logP parameters of the P=O moiety were more than the P=S moiety in PAT analogues.  相似文献   

6.
A series of dinickel (II) complexes of bis-2-(C3HN2(R1)2-3,5)(C(R2)N(C6H3(CH3)2-2,6)Ni2Br4 (complex 1: R1 = CH3, R2 = Ph; complex 2: R1 = CH3, R2 = 2,4,6-trimethylphenyl; complex 3: R1 = R2 = Ph; complex 4: R1 = Ph, R2  = 2,4,6-trimethylphenyl) were synthesized and characterized. The solid-state structures of complexes 1, 2 and 3 have been confirmed by X-ray single-crystal analyses to be in the form of a dinuclear and bromine-bridged structure. However, there is an equilibrium that shifts between the monomer and dimmer in toluene based on the characterization of UV-vis spectrophotometry. Activated by methylaluminoxane (MAO), these complexes are capable of catalyzing the polymerization of norbornene with moderate activity up to 6.64 × 105 gPNBE/(molNi·h). The influences of polymerization parameters such as reaction temperature and Al/Ni molar ratio on catalytic activity and molecular weight of the polynorbornene were investigated in detail. The influence of the bulkiness of the substituents on polymerization activity was also studied. The obtained polynorbornenes were characterized by means of 1H NMR, FTIR and TG techniques. The analyses results of polymers’ structures indicated that the norbornene polymerization is vinyl-type polymerization rather than ROMP.  相似文献   

7.
Ten new N-nicotinyl and N-isonicotinyl phosphoramidates with formula XP(O)R2, X?=?Nicotinamide(nia), R?=?NHCH2Ph (1), N(CH3)CH2Ph (2), NHCH(CH3)Ph (3), NH-CH2C4H3O (4), NHCH2(C5H4N) (5), 3-NH-C5H4N (6), and YP(O)R2, Y?=?isonicotinamide(iso), R?=?NHCH2Ph (7), N(CH3)CH2Ph (8), NHCH(CH3)Ph (9), NH-CH2C4H3O (10) plus one new Er(III) complex with formula Er(L)2(NO3)3 (11), L?=?(iso)PO(NHCH2C4H3O)2 (10), were synthesized and characterized by elemental analysis and 1H, 13C, 31P NMR, IR, UV?Cvis spectroscopy. Crystal structures of compounds 10 and 11 were also determined by X-ray crystallography. Interestingly, the 1H NMR spectra of compounds 1, 2, 6, 7, 9 indicated long-range n J P,H (n?=?5,6,7) coupling constants, in the range of 1.4?C1.9?Hz, for the splitting of pyridine ring protons with phosphorus atom. IR results showed that the ??(C=O) values of compounds 7?C10 are greater than those of compounds 1?C5 which means that isonicotinyl moiety is more electron withdrawing than nicotinyl group. X-ray outcomes revealed that in complex 11 three phosphoric triamide ligands have been connected to each Er(III); one from Npyridine and two from P=O donor sites. One of the P=O donor ligands is mono dentate while the other one acts as a bidentate ligand and coordinates to another Er atom via its Npyridine site. By forming complex 11 the P=O and C?CNamide bond lengths of ligand is increased in both, mono and bi dentate, ligands while the C=O bond length is decreased to lower values. These variations are in good agreement with IR results. All H-bonds and electrostatic interactions lead to form a three-dimensional polymeric cluster in the crystal lattice of 10 and 11.  相似文献   

8.
A series of neutral bimetallic lanthanide aryloxides p-C6H4[OLnL(THF)n]2 [Ln = Y(1), Yb(2), Sm(3)(n = 1) and La(4)(n = 2), L = Me2NCH2CH2N{CH2-(2-O–C6H2–tBu2-3,5)}2] and alkoxides p-C6H4CH2[OLnL(THF)]2 [Ln = Y(5), Yb(6)] supported by an amine-bridged bis(phenolate) ligand have been synthesized through one-pot reactions of Ln(C5H5)3(THF), LH2 with p-benzenediol and 1,4-benzenedimethanol, respectively. All complexes have been fully characterized by elemental analyses, single-crystal X-ray diffraction analysis, and IR and multi-nuclear NMR spectroscopy(in the cases of 1, 4 and 5). Study of their catalytic behavior revealed that, in general, all complexes are efficient initiators for the polymerization of rac-lactide(LA) and rac-β-butyrolactone(BBL), except for 3 and 4 in the case of BBL. The influence imposed by lanthanides of different ionic radii and initiating groups of different structures on the activity, controllability, and stereoselectivity of polymerization were systematically studied and compared. Highly heterotactic PLA(Pr up to 0.99) and syndiotactic PHB(Pr ≈ 0.81) with high molecular weight and narrow polydispersity formed and were automatically capped with hydroxyl functionality at both ends.  相似文献   

9.
李悦生 《高分子科学》2013,31(4):574-582
The ethylene/cyclopentadiene (CPD) copolymerization behavior by using fluoro-substituted bis(β-enaminoketonato) titanium complexes [FC6H4NC(CH3)CHCO(CF3)]2TiCl2 (1a1c) has been investigated in detail. Upon utilizing MMAO as a cocatalyst, complexes 1a1c exhibit high catalytic activities, affording the copolymers with high molecular weight and unimodal molecular weight distribution. Compared with non-substituted complex [C6H5NC(CH3)CHCO(CF3)]2TiCl2 (1), complexes 1a1c can produce the copolymers with CPD incorporation adjusted in a wide range due to the enhancement of electrophilicity of metal center caused by introducing electron-withdrawing groups. Especially complex 1c bearing fluorine at the para-position of N-aryl moiety provides the highest CPD incorporation, which is nearly two times (18.5 mol%) higher than the non-substituted complex 1 (8.9 mol%) under the same conditions. The highest CPD incorporation up to 24.6 mol% can be easily achieved using this complex. 1H- and 13C-NMR spectra demonstrate that these fluoro-substituted complexes possess regioselective nature with exclusive 1,2-insertion fashion, and alternating ethylene-CPD sequence can be detected at high CPD incorporation.  相似文献   

10.
New 1,3,6,2-dioxazaborocanes R1N(CHR3CR4R2O)(CHR6CHR5O)BX (1–11, X = Ph, 4-MeC6H4, Me; R1 = Me, PhCH2; R2, R3, R4, R5, R6 = H, Ph) were synthesized by the reactions of aryl- or methylboronic acids with dialkanolamines. The treatment of (Me2NCH2CH2O)3B (15) with MeN(CH2CH2OH)(CH2CPh2OH) afforded 2-[2-(dime-thylamino)ethoxy]-1,3,6,2-dioxazaborocane (12). 2-Fluoro-1,3,6,2-dioxazaborocanes R1N(CHR3CHR2O)(CH2CH2O)BF (13: R1 = PhCH2, R2 = R3 = H; 14: R1 = Me, R2 = R3 = Ph, threo) were synthesized by the reaction of bis(trimethylsilyl) ethers of the corresponding dialkanolamines with BF3·Et2O. The new borocanes can be used for the synthesis of the corre-sponding germanium derivatives PhCH2N(CH2CH2O)2GeX2 (16, X = OEt; 17, X = Cl), as exemplified by the reaction of compound 6. The structures of erythro-MeN(CH2CH2O)(CHPhCHPhO)BPh (3), threo-MeN(CH2CH2O)(CHPhCHPhO)BPh (4), erythro-MeN(CH2CH2O)(CHPhCHPhO)B(4-MeC6H4) (8), and PhCH2N(CH2CH2O)2BF (13) were established by X-ray diffraction. The coordination polyhedra of the boron atoms in these complexes can be described as distorted tetrahedra. The boron-nitrogen distances (1.705(7)–1.723(3) Å) provide unambiguous evidence for the presence of the B←N transannular interaction in these compounds. The structures of the resulting borocanes containing phenyl substituents at the carbon atoms of the ocane skeleton were studied by NMR spectroscopy and quantum chemical density functional theory calculations.  相似文献   

11.
Reactions of ClMe2Si–Z–SiMe2Cl (Z = SiMe2 (1a), CH2 (1c), O (1e)) with Li2E (E = S, Se) yielded eight-membered ring compounds (SiMe2ZSiMe2E)2 (3ad) as well as acyclic oligomers (SiMe2ZSiMe2E)x of different chain lengths. If 1:1 molar mixtures of 1a, 1c or 1e and a diorganodichlorosilane, -germane or -stannane (R2MCl2) are reacted with Li2E (E = S, Se, Te), six-membered ring compounds Z(SiMe2E)2MR2 (4a7g) are formed exclusively. Five-membered rings Z2(SiMe2)2E (Z = SiMe2 (8ac), CH2 (9ac); E = S, Se, Te) are obtained starting from the tetrasilane ClMe2Si–(SiMe2)2–SiMe2Cl (1b) or the disilylethane ClMe2Si–(CH2)2–SiMe2Cl (1d) by treatment with Li2E. All products were characterized by multinuclear NMR spectroscopy (1H, 13C, 29Si, 119Sn, 77Se, 125Te, including coupling constants) and the effects of the different ring sizes towards NMR chemical shifts are discussed.  相似文献   

12.
A number of bridged half-sandwich titanium complexes [η51-2-C5H4CHPh-4-R1-6-R2C6H2O]TiCl2 [R1 = H (5), Me (6), tBu (78); R2 = H (67), tBu (58)] were synthesized from the reaction of their corresponding trimethylsilyl substituted ligand precursors 2-Me3SiC5H4CHPh-4-R1-6-R2C6H2OSiMe3 [R1 = H (1), Me (2), tBu (34); R2 = H (23), tBu (14)] with TiCl4 in hexane. All new complexes were characterized by 1H and 13C NMR spectroscopy. Molecular structures of complexes 5 and 8 were determined by single crystal X-ray diffraction analysis. Upon activation with AliBu3/Ph3CB (C6F5)4, complexes 5-8 exhibit reasonable catalytic activity for ethylene polymerization and copolymerization with 1-hexene, producing polyethylene and poly(ethylene-co-1-hexene) with moderate molecular weights.  相似文献   

13.
Reaction of [VO(OPr i )3] (1) with [O(CH2CH2OH)2] in 1:1 molar ratio in anhydrous benzene yield glycol-modified precursor, [VO{OCH2CH2OCH2CH2O}{OPr i }] (2). Further reactions of (2) with internally functionalized oximes in anhydrous benzene yield heteroleptic complexes of the type [VO{OCH2CH2OCH2CH2O}{ON=C(R)(Ar)}] (3–8) {where R=CH3, Ar=C4H3O-2 (3), C4H3S-2 (4), C5H4N-2 (5); and when R=H, Ar=C4H3O-2 (6), C4H3S-2 (7), C5H4N-2 (8)}. All these derivatives have been characterized by elemental analyses, molecular weight measurements and spectroscopic techniques. The crysoscopic molecular weight measurement as well as FAB mass study suggests dimeric nature of (2). However, FAB mass spectrum of (4), and the crysoscopic molecular weight measurements of (3), (4), (5) and (6) indicate the monomeric behavior of the oximato derivatives (3–8). Hexa-coordination around vanadium(V) has been proposed for both monomeric and dimeric derivatives. Sol–gel transformations of (1), (2) or (4) to vanadia [(a), (b) or (c), respectively] have been carried out at low sintering temperature (600 °C). The XRD patterns of (a), (b) or (c) indicate formation of a single orthorhombic phase in all the three cases. The SEM images suggest grain like [for (a) and (b)] and rod like [for (c)] morphology of the crystallites. IR, Raman spectra as well as EDX analyses indicate formation of pure vanadia. Absorption spectra of the vanadia (b) and (c) suggest energy band gaps of 2.53 and 2.65 eV, respectively.  相似文献   

14.
The reactions of a bulky amino-methoxy bis(phenolate) ligand H2L with Y(CH2SiMe3)3(THF)2 and Y[N(SiHMe2)2]3(THF)2 under mild condition leads to the selective formation of the thermally stable complexes [L]Y(CH2SiMe3)(THF) (1) and [L]Y[N(SiHMe2)2](THF) (2). The X-ray structures revealed very similar binding of the [ONOO] ligand core to the metal for both complexes, which feature an octahedral geometry involving coordination of the methoxy side-arm of the ligand and of a remaining THF molecule. 1H-NMR spectroscopy indicates that the solid state structure of 1 and 2 is retained in hydrocarbon solutions with THF coordinated to yttrium. Alkyl complex 1 showed no activity in ethylene polymerization, presumably due to the presence of coordinated THF. The amido complex 2 catalyzed sluggishly the polymerization of methyl methacrylate to give isotactic-rich PMMA but is very active for the ring-opening polymerization of ε-caprolactone.  相似文献   

15.
Two benzene centered tri- and tetracyclopentadienyl ligands C6H3(CH2C5H5)3-1,3,5 (1) and C6H2(CH2C5H5)4-1,2,4,5 (2) and their titanium complexes C6H3[CH2C5H4Ti(C5H5)Cl2]3-1,3,5 (3), C6H3[CH2C5H4Ti(C5H4CH3)Cl2]3-1,3,5 (4), as well as C6H2[CH2C5H4Ti(C5H5)Cl2]4-1,2,4,5 (5) were synthesized and characterized by mass and 1H NMR spectra. In the presence of methylaluminoxane (MAO), 3, 4 and 5 are efficient catalysts for ethylene polymerization in toluene. The influence of the polymerization conditions such as catalyst concentration, MAO/Ti molar ratio, polymerization time and temperature were investigated in detail. 3, 4 and 5 produce linear polyethylene (PE) with broad molecular weight distributions (MWD) and a little lower molecular weight.  相似文献   

16.
A glycol ether modified precursor, [Nb{O(CH2CH2O)2}(OPri)3] (A) was prepared by the reaction of Nb(OPri)5 with O(CH2CH2OH)2 in 1:1 molar ratio in anhydrous benzene. Further reactions of A with a variety of internally functionalized oximes in different molar ratios, yielded heteroleptic complexes of the type, [Nb{O(CH2CH2O)2}(OPri)3?n{ON = C(CH3)(Ar)}n] (1–9) {where Ar = C4H3O-2, n = 1 [1], n = 2 [2], n = 3 [3]; C4H3S-2, n = 1 [4], n = 2 [5], n = 3 [6]; C5H4N-2, n = 1 [7], n = 2 [8], n = 3 [9]}. All the above derivatives have been characterized by elemental analyses, FT-IR, NMR (1H, 13C {1H}) and FAB mass studies. Spectral studies of 1–9 suggest the presence of mono- and bi-dentate mode of oxime moieties, in the solution and in the solid states, respectively. FAB mass studies indicate monomeric nature for 3 and dimeric nature for A. TG curves of A and 6 show their low thermal stability. Soft transformation of A and 3 to pure niobia, a and b, respectively have been carried out by sol–gel technique. The XRD patterns of niobia a and b suggest the formation of nano-size crystallites of average size of 10.8 and 19.5 nm, respectively. The XRD patterns also indicate the formation of monoclinic phase of the niobia in both the cases. Absorption spectra of a and b suggest energy band gaps of 4.95 and 4.39 eV, respectively.  相似文献   

17.
Lithium derivatives of substituted cyclopentadiene ligands reacted with CrCl3(THF)3 in THF solution to afford homodinuclear complexes of the type [{(η5-RCp)CrCl(μ-Cl) }2] [R=SiMe3 (1), CH2C(Me)CH2 (2)]. Complex 1 reacts with pyrazole (C3H4N2) to yield the mononuclear half-sandwich complex [(η5-Me3SiCp)CrCl2(pyrazole)] (3). The similar complex [Cp*CrCl2(pyrazole)] (4) was synthesised by reaction of [{Cp*CrCl(μ-Cl)}2] with pyrazole. Complex 2 reacts with bidentate ligands to give binuclear complexes of the type [{(η5-CH2C(Me)CH2Cp)CrCl2 }2(μ-L-L)] [L-L=Ph2PCH2CH2PPh2 (5), trans-Ph2P(O)CHCHP(O)Ph2 (6)]. All complexes were structurally characterised by X-ray diffraction. After reaction with methylaluminoxane these complexes are active in the polymerization of ethylene. At 25 °C and 4 bar of ethylene, complex 3 yields polyethylene with a bimodal molecular weight distribution centred at 155,000 and 2000 g/mol. Complex 4 shows similar activity, yielding only the low molecular weight fraction. On the other hand, the binuclear complexes 5 and 6 under the same conditions were three times more active than mononuclear complexes. The melting point of the polymers indicates the formation of linear polyethylene.  相似文献   

18.
Photoionization mass spectrometry was used to investigate the dynamics of ion-neutral complex-mediated dissociations of the n-pentane ion (1). Reinterpretation of previous data demonstrates that a fraction of ions 1 isomerizes to the 2-methylbutane ion (2) through the complex CH3CH+CH 3 · CH2CH3 (3), but not through CH3CH+CH2CH 3 · CH3 (4). The appearance energy for C3Hin 7 + formation from 1 is 66 kJ mol?1 below that expected for the formation of n-C3H 7 + and just above that expected for formation of i-C3H 7 + . This demonstrates that the H shift that isomerizes C3H 7 + is synchronized with bond cleavage at the threshold for dissociation to that product. It is suggested that ions that contain n-alkyl chains generally dissociate directly to more stable rearranged carbenium ions. Ethane elimination from 3 is estimated to be about seven times more frequent than is C-C bond formation between the partners in that complex to form 2, which demonstrates a substantial preference in 3 for H abstraction over C-C bond formation. In 1 → CH3CH+CH2CH3 + CH3 by direct cleavage of the C1–C2 bond, the fragments part rapidly enough to prevent any reaction between them. However, 1 → 2 → 4 → C4H 8 + + CH4 occurs in this same energy range. Thus some of the potential energy made available by the isomerization of n-C4H9 in 1 is specifically channeled into the coordinate for dissociation. In contrast, analogous formation of 3 by 1 → 3 is predominantly followed by reaction between the electrostatically bound partners.  相似文献   

19.
Some new Schiff bases, (Z)-4-amino-3-((E)-(R-methoxybenzylidene)hydrazono)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L2), R?=?3 (L3) and R?=?4 (L4)), were synthesized by the condensation reactions of 4-amino-3-hydrazinyl-6-methyl-1,2,4-triazin-5(4H)-one (L1) and corresponding methoxybenzaldehyde in a molar ratio 1:1.5 in high yields. The reaction of L2 and L4 with an excess amount of the corresponding aldehydes gave the unsymmetrical bis-Schiff bases (E)-3-((E)-(R-methoxybenzylidene)hydrazono)-4-((E)-R-methoxybenzylideneamino)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L22) and R?=?4 (L44)), respectively. Furthermore, the reaction of L2?CL4 with silver(I) nitrate in a molar ratio 2:1 led to the silver(I)-complexes with the general formula [Ag(Lx)2]NO3 (Lx?=?L2 (2), L3 (3) and L4 (4)). All synthesized Schiff base compounds and complexes were characterized by a combination of IR-, 1H-NMR spectroscopy, mass spectrometry and elemental analyses. In addition, the structures of L2, L4·CH3CN, L22·CH3OH and L44·CH3OH and complexes 2 and 4 were determined by X-ray diffraction studies.  相似文献   

20.
A series of pyrrolyl-imines HL1-6 was prepared by the condensation of pyrrole-2-carboxyaldehyde with different amines. The reaction of 2 equiv of pyrrolyl-imine with tetrabenzyl complexes of hafnium and zirconium M(CH2Ph)4 (M=Hf or Zr) gave dibenzyl complexes (L3-6)2M(CH2Ph)2, which were characterized by NMR spectroscopy and crystal structure analysis. NMR spectra of the complexes with secondary alkyl substituents at the imine nitrogen (isopropyl: 3a, 4-tert-butylcyclohexyl: 4a and 4b) suggest that rapid racemization between Δ and Λ configurations occurs in solution on the NMR time scale. The complexes with pyrrolide-imine ligands with a tertiary alkyl group such as tert-butyl (5a and 5b) or 1-adamantyl (6a and 6b) at the imine nitrogen possess cis-configured benzyl groups. Hafnium complexes 5a and 6a react with B(C6F5)3 in bromobenzene-d5 to give the corresponding cationic benzyl complexes, which exhibit high activity for ethylene polymerization (5a: 2242 kg-polymer/ mol-Hf h bar, 6a: 2096 kg-polymer/ mol-Hf h bar). Zirconium complexes 5b and 6b display a remarkably high ethylene polymerization activity when activated with methylaluminoxane (5b: 17,952 kg-polymer/mol-Zr h bar, 6b: 22,944 kg-polymer/mol-Zr h bar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号