首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
A silver nanoparticles-poly(carboxybetaine methacrylate)(AgNPs-PCBMA) nanocomposite was prepared on poly(vinylidene fluoride)(PVDF) membrane surface to improve its hydrophilicity and antifouling properties. Firstly, the PVDF membranes were grafted by PCBMA via physisorbed free radical grafting technique. Then Ag+ coordinated to the carbonyl group on PCBMA andsubsequently was reduced to silver nanoparticles. The hydrophilicity of the PVDF-gPCBMA/Ag membrane wasenhanced with the increasing fixed degree(FD) of AgNPs, and the original water contact angle of membrane was reduced to 33.97°. Additionally, water flux recovery ratio(FRR) andbovine serum albumin(BSA) rejection ratio of PVDF-g-PCBMA/AgNPs membrane wereimproved from 52% to 93.32% and 28.12% to 91.12%, respectively. Further, the PVDF-g-PCBMA/AgNPs membranes exhibited the more pronounced inhibition zone. The study demonstrated that compared with pure AgNPs or the PCBMA polymer brush, the synergistic effect of PCBMA and AgNPs made PVDF membranes havebetter hydrophilicity and anti-bacterialperformances.  相似文献   

2.
Herein, functionalized graphene oxide (GO) was prepared by the covalent functionalization with amino acids (lysine, glycine, glutamic acid and tyrosine) in this study. Zeta potential results demonstrated that covalent functionalization of GO with amino acids was favourable for their homogeneous dispersion in water and organic solvents. Based on the higher absolute value of zeta potential and the better dipersion stability of GO-lysine, the PVDF/GO-lysine hybrid membranes were then prepared via the phase inversion induced by immersion precipitation technique. SEM images showed a better pore diameter and porosity distribution on the PVDF/GO-lysine membrane surface. The zeta potential absolute value of the PVDF/GO-lysine membrane surface was higher than that of the virgin PVDF membrane. Furthermore, the PVDF/GO-lysine membranes surface exhibited good hydrophilicity. The water flux of PVDF/GO-lysine membranes can reach to two times of that of the virgin PVDF membrane. And the BSA adsorbed amount on PVDF/GO-lysine surface was decreased to 0.82 mg/cm2 for PVDF/GO-lysine-8% membrane. Filtration experiment results indicated that the fouling resistance was significantly improved for the PVDF/GO-lysine membranes. As a result, lysine functionalized GO will provide a promising method to fabricate graphene oxide based hybrid membranes with effective antifouling property and hydrophilicity.  相似文献   

3.
Hydrophilic poly(vinylidene fluoride) (PVDF) nanocomposite ultrafiltration (UF) membranes with excellent antifouling and antibiofouling characteristics are fabricated by employing polyhexanide coated copper oxide nanoparticles (P–CuO NPs). The presence of P–CuO NPs is played a significant role in altering the PVDF membrane matrix and probed by XRD, FTIR, FESEM and contact angle analysis. The PVDF/P–CuO nanocomposite membranes exhibited an outstanding antifouling performance indicated by the superior pure water flux, effective foulant separation and maximum flux recovery ratio during UF experiments as a result of the formation of the hydrophilic and more porous membrane due to the uniform distribution of P–CuO NPs. Particularly, the PVDF/P–CuO-3 membrane showed higher PWF of 152.5 ± 2.4 lm−2h−1 and porosity of 64.5% whereas the lower contact angle of 52.5°. Further, it showed the higher rejection of 99.5 and 98.4% and the flux recovery ratio of 99.5 and 98.5% respectively for BSA and HA foulants, demonstrated its increased water permeation, foulant separation and antifouling behavior. Further, the decent antibacterial activity is showed by the PVDF/P–CuO nanocomposite membranes with the formation of halo-zone around the membrane when exposed to the bacterial medium demonstrated that, by this process an antibacterial water treatment membrane can be developed by simple phase inversion technique with good membrane stability.  相似文献   

4.
Polyethylene/TiO2 membranes were fabricated via thermally induced phase separation (TIPS) method. A set of characterization tests including FE‐SEM, EDX, XRD, DSC, TGA, DMA, mechanical test and relative pure water flux for characterization of membranes were carried out to investigate the effect of TiO2 nanoparticles on membrane properties. The results of EDX, XRD and TGA analyses confirmed the presence of TiO2 nanoparticles in the polymer matrix. The results of DSC analysis revealed that the melting point as well as the crystallinity of the membranes increased slightly with increasing TiO2 content. However, the glass transition temperature of the membranes was not affected by the presence of particles. Addition of nanoparticles also increased storage modulus, loss modulus and tensile strength at break of the membranes due to the stiffness improvement effect of inorganic TiO2. Finally, it was observed that incorporation of the nanoparticles improved pure water flux of the membranes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This study is aimed to highlight the possibility of engineering the multifunctional textile nanocomposite material based on the polyester (PES) fabric modified with colloidal Ag and TiO2 nanoparticles (NPs). The effects of concentration of NPs as well as the order of Ag and TiO2 NPs loading on antimicrobial, UV protective, and photocatalytic properties of PES fabrics were examined. The antimicrobial activity of differently modified PES fabrics was tested against Gram‐negative bacterium Escherichia coli, Gram‐positive bacterium Staphylococcus aureus, and fungus Candida albicans. The concentration of Ag colloid and the order of Ag and TiO2 NPs loading considerably affected the antimicrobial efficiency of PES fabrics. The fabrics provided maximum UV protection upon surface modification with Ag and TiO2 NPs. Ag NPs enhanced Ag NPs enhanced the photodegradation activity of TiO2 NPs and total photodegradation of methylene blue was achieved after 24 hr of UV illumination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Surface-initiated atom transfer radical polymerization(SI-ATRP) was used to tether poly(2-dimethylaminoethyl methacrylate)(PDMAEMA) onto microporous PVDF membranes in order to synthesize membrane adsorbers for protein adsorption. The alkaline treatment and bromine addition reaction were used to anchor ATRP initiators on membrane surface. Then PDMAEMA was grafted from the membrane surface via SI-ATRP. Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and scanning electron microscopy(SEM) revealed the chemical composition and surface topography of the PVDF-g-PDMAEMA membrane surfaces. These results showed that PDMAEMA was grafted from the membrane surface successfully and a grafting yield as high as 1500 μg/cm2 was achieved. The effects of the grafting time and the density of initiators on the static and dynamic binding capacity of bovine serum albumin(BSA) were systematically investigated. Both the static and dynamic binding capacities increase with the bromination and polymerization time. However, the benefits of the initiator density on binding capacities are limited by the graft density of PDMAEMA chains.  相似文献   

7.
In order to improve the antifouling performance of PVDF membrane, a novel zinc sulfide/graphene oxide/polyvinylidene fluoride (ZnS/GO/PVDF) composite membrane was prepared by immersed phase inversion method. The surface morphology, crystal structure, photocatalytic activity, and antifouling property of the as‐prepared membranes were systematically studied. Results showed that the ZnS/GO/PVDF hybrid membranes were successfully fabricated with uniform surface. The hybrid membrane surface possessed higher hydrophilicity with water contact angle decreasing from 77.1° to 62.2°. The permeability of the hybrid membrane was therefore enhanced from 222.9 to 326.1 L/(m2 hour). Moreover, bovine serum albumin (BSA) retention experiment showed that the hybrid membrane separation was also promoted by 7.2%. The blending of ZnS and GO enhanced the hydrophilic and photocatalytic performances of PVDF membrane, which mitigated the membrane fouling effectively. This novel hybrid membrane could accelerate the practical application of photocatalytic technology in membrane separation process.  相似文献   

8.
A facile approach was developed to prepare highly dispersed TiO2 nanoparticles with selected phase. The crystallization phase of the nanoparticles can be easily tuned from anatase to rutile by the dosage of hydrochloric acid in the reaction system. The crystallite size of the as-prepared anatase TiO2 nanoparticles was ca. 3.2 nm with high dispersion. A transparent TiO2 colloid was obtained by dispersing the as-prepared anatase TiO2 nanoparticles in deionized water without any organic additives added. The concentration of TiO2-H2O colloid can be as high as 1600 g/L. The optical transmittance of TiO2-H2O colloid with a low concentration was nearly 100% in the visible region. Furthermore, anatase TiO2 nanoparticles(TiO2-NPs) showed superior photocatalytic performance compared to rutile TiO2-NPs.  相似文献   

9.
TiO2 has been tested to be toxic to DNA under the photo-irradiation of ultraviolet A (UVA). However, in the dark conditions, after several days of treatment with TiO2 in aqueous solution, the interaction between TiO2 and two types of DNA was detected and the mechanisms were studied by the methods of gel-electrophoresis, IR spectroscopy and TEM. The results showed that the DNA would be bound to TiO2; the ratio of binding was related to the concentration and the treating time; the mechanism of binding is related to phosphate groups of DNA. Besides, DNA with different structure showed different degree of binding. These findings showed a new possible way through which the TiO2 nanoparticles interact with DNA.  相似文献   

10.
The objective of this study was to highlight the potential application of the corona discharge at atmospheric pressure for the surface activation of polyester (PES) fabrics in order to improve the binding efficiency of colloidal TiO2 nanoparticles. The obtained nanocomposite textile materials provide desirable level of UV protection, self‐cleaning properties, and photodegradation activity. The measured UV protection factor (UPF) of fabrics corresponds to UPF rating of 50+, designating the maximum UV protection. Additionally, the total photodegradation of methylene blue in aqueous solution was achieved after 24 hr of UV illumination and this capability was preserved and even improved after four repeated cycles. The results showed that the corona treated PES fabrics loaded with TiO2 nanoparticles had considerably enhanced the overall efficiency compared to PES fabrics loaded only with TiO2 nanoparticles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
为阻止纳米管钛酸在转变为新型锐钛矿TiO2时管状结构的破坏,先在纳米管钛酸的内、外表面化学吸附一层物质,用以保护纳米管钛酸在脱水转变为新型锐钛矿TiO2的过程中,管状结构不断裂、不塌陷,然后再除去表面的吸附物质,即可制得纯净的新型TiO2纳米管。新型TiO2纳米管有望应用于可见光"全"分解水制H2、药物缓释剂以及纳米反应器等研究。  相似文献   

12.
吴飞鹏 《高分子科学》2012,30(5):770-776
Thermo-responsive block copolymers poly(ethylene glycol)-block-poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine), PEG-b-PADMO,based on linear PEG were prepared via a versatile reversible addition-fragmentation chain transfer(RAFT) polymerization.PEG22(Mw = 1000) was used as the hydrophilic component,whose dehydration was the main driving force for the phase transition of these copolymers,as demonstrated by the 1H-NMR spectra.Their lower critical solution temperatures(LCSTs) could be tuned in the range of 20℃to 35℃,by adjusting the degree of polymerization(DP) of PADMO between 14-27.Furthermore,a sharp phase transition at ca.33℃,close to the physiological temperature with minimal hysteresis,was observed for the PEG22-b-PADMO14 copolymer.Moreover,excellent reversibility and reproducibility were displayed for the same copolymer over 10 cycles of repeated temperature change between 25℃(below the LCST) and 40℃(above the LCST).  相似文献   

13.
Photocatalysis has been extensively studied due to its potential ability to avoid the excessive use of chemical reagents and reduce the energy consumption by employing solar energy. Moreover, to alleviate the reduction in the membrane permeation selectivity, separation efficiency, and membrane service life caused by the emerging micro-pollutants and membrane fouling, membrane technology is often coupled with microbial, electrochemical, and catalytic processes. However, although physical/chemical cleaning and membrane module replacement can overcome the inherent limitations caused by membrane fouling and other membrane separation processes, high operating costs limit their practical applications. In this review, common preparation methods for TiO2 photocatalytic membranes are described in detail, and the main approaches to enhancing their photocatalytic performance are discussed. More importantly, the mechanism of the TiO2 photocatalytic membrane antifouling process is elucidated, and some applications of photocatalytic membranes in other areas are described. This review systematically outlines future research directions in the field of photocatalytic membrane modification, including metal and non-metal doping, fabrication of heterojunction structures, control over reaction conditions, increase in hydrophilicity, and increase in membrane porosity.  相似文献   

14.
To satisfy the ever-increasing energy demands, it is of the utmost importance to develop electrochemical materials capable of producing and storing energy in a highly efficient manner. Titanium dioxide (TiO2) has recently emerged as a promising choice in this field due to its non-toxicity, low cost, and eco-friendliness, in addition to its porosity, large surface area, good mechanical strength, and remarkable transport properties. Here, we present titanium dioxide nanoplates/polyvinylidene fluoride (TiO2/PVDF) membranes prepared by a straightforward hydrothermal strategy and vacuum filtration process. The as-synthesized TiO2/PVDF membrane was applied for energy storage applications. The fabricated TiO2/PVDF membrane served as the negative electrode for supercapacitors (SCs). The electrochemical properties of a TiO2/PVDF membrane were explored in an aqueous 6 M KOH electrolyte that exhibited good energy storage performance. Precisely, the TiO2/PVDF membrane delivered a high specific capacitance of 283.74 F/g at 1 A/g and maintained capacitance retention of 91% after 8000 cycles. Thanks to the synergistic effect of TiO2 and PVDF, the TiO2/PVDF membrane provided superior electrochemical performance as an electrode for a supercapacitor. These superior properties will likely be used in next-generation energy storage technologies.  相似文献   

15.
Despite the fragility of TiO(2) under electron irradiation, the intrinsic structure of Au/TiO(2) catalysts can be observed by environmental transmission electron microscopy. Under reaction conditions (CO/air 100?Pa), the major {111} and {100} facets of the gold nanoparticles are exposed and the particles display a polygonal interface with the TiO(2) support bounded by sharp edges parallel to the 〈110〉 directions.  相似文献   

16.
《先进技术聚合物》2018,29(10):2619-2631
In the present work, development of neat and nanocomposite polyethersulfone membranes composed of TiO2 nanoparticles is presented. Membranes are fabricated using nonsolvent phase inversion process with the objective of improving antifouling, hydrophilicity, and mechanical properties for real and synthetic produced water treatment. Membranes are characterized using scanning electron microscopy, Fourier‐transform infrared, contact angle, porosity measurement, compaction factor, nanoparticles stability, and mechanical strength. The performance of prepared membranes was also characterized using flux measurement and oil rejection. Fourier‐transform infrared spectra indicated that noncovalence bond formed between Ti and polyethersulfone chains. The contact angle results confirmed the improved hydrophilicity of nanocomposite membranes upon addition of TiO2 nanoparticles owing to the strong interactions between fillers and water molecules. The increased water flux for nanocomposite membranes in comparison with neat ones can be due to coupling effects of improved surface hydrophilicity, higher porosity, and formation of macrovoids in the membrane structure. The membrane containing 7 wt% of TiO2 nanoparticles was the best nanocomposite membrane because of its high oil rejection, water flux, antifouling properties, and mechanical stability. The pure water flux for this membrane was twice greater than that of neat membrane without any loss in oil rejection. The hydrophilicity and antifouling resistance against oil nominates developed nanocomposite membranes for real and synthetic produced water treatment applications with high performance and extended life span.  相似文献   

17.
Preparation and Photocatalytic Characterization of Nanoporous TiO2   总被引:2,自引:0,他引:2  
Nanoporous TiO2 photocatalysts were prepared by use of controlled drying method with surfactants. The surface area and porous properties are dependent on the chain length of incorporated surfactant cation. The TiO2 materials prepared in the presence of surfactant molecules during the gel formation exhibit much higher photocatalytic activity than that prepared in the absence of surfactants.  相似文献   

18.
TiO2纳米粒子膜催化剂光催化降解水中污染物,与粉末相比具有可重复使用、易回收等优点,近年来,在光化学领域受到人们的高度重视[1~3].膜催化剂的表面性质与其光催化活性直接相关,研究这些性质能够为研制、开发高效催化剂提供理论依据.本文采用TiCl4水解法,制备了酸性、碱性条件下TiO2纳米粒子膜.利用原子力显微镜(AFM)、X-射线衍射谱(XRD)、红外光谱(IR)和场诱导表面光电压谱(EFISPS)测定其表面微结构.考察了它们对苯酚降解的光催化活性,讨论了膜催化剂的表面性质对光催化活性的影响.  相似文献   

19.
By varying the hydrolysis and hydrothermal processing parameters in preparing TiO2 nanoparticles different sizes of TiO2 nanoparticles are obtained.(1) At higher autoclaving temperature,lower pH and longer autoclaving period,larger sizes of TiO2 nanoparticles are prepared.(2) The nanoporous electrodes made from sintering smaller TiO2 nanoparticles show relatively poor IPCE and low absorption in UV-Vis spectrum,(3) Higher IPCE can be achieved with TiO2 nanoporous electrodes made from sintering larger TiO2 nanoparticles.These electrodes are suitable for studying behavior of the photoelectrochemistry of dye sensitized nanoporous electrodes.  相似文献   

20.
杜春慧 《高分子科学》2015,33(6):857-868
Polymerizable ionic liquid copolymer P(MMA-co-BVIm-Br) was synthesized by radical polymerization technique, and characterized by Fourier transform infrared spectrometry(FTIR), 1H Nuclear magnetic resonance(1H-NMR) and gel permeation chromatography(GPC). The resulting copolymer was used to prepare poly(vinylidene fluoride)(PVDF) blend membranes via a phase inversion method. The effects of the copolymer on the polymorphism, surface wettability and zeta potential(ζ) of the blend membranes were investigated by ATR-FTIR, contact angle instrument and zeta potential analyzer. Scanning electron microscopy(SEM and SEM-EDS) was also applied to investigate the morphology and the surface element changes of the fabricated membranes. The results indicated that P(MMA-co-BVIm-Br) copolymer existed on the surface of the membrane which made the blend membrane have a positive surface during the experimental p H range. The copolymer was also in favor of the formation of β crystal phase in PVDF membranes. The contact angle experiment indicated that P(MMA-co-BVIm-Br) copolymer could switch the wettability of the blend membranes from hydrophilic to hydrophobic by exchanging Br-anion with PF-6. Compared with pure PVDF membranes, the water flux and water recovery flux of the blend membranes were enhanced obviously. The results from the flux recovery ratio(FR) and total fouling ratio(Rt) all suggested that the blend membranes had good anti-fouling properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号