首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
两平行刚性圆盘挤压理想刚塑性介质时压力规律研究   总被引:1,自引:0,他引:1  
两平行刚性圆盘挤压理想刚塑性介质时,通常考虑圆盘与介质的界面之间存在部分滑移,对库仑摩擦条件下的压力规律做了进一步的研究,同时,引入更合理的速度场,假设圆盘边缘处滑移速度一定,介质的滑移速度随着半径线性变化,得到了压力分布规律,对不同的摩擦条件及用不同方法计算得到的结果进行了对比。  相似文献   

2.
The squeeze flow of a rigid-plastic medium between parallel disks is considered for small gaps with partial wall slip. The stress distribution and the squeeze force between parallel disks of a rigid-plastic medium with the following four different slip boundary conditions are obtained. (1) The Coulombic friction condition is applied, and the stress distribution on the wall is derived, which is linear or exponential distribution in the no-slip area or slip area. (2) It is assumed that the slip velocity at the disks increases linearly with the radius up to the rim slip velocity, with the stress distribution and the squeeze force gained. (3) The assumption that the slip velocity at the disks is related to the shear stress component is used, with the stress distribution and the squeeze force obtained, which is equivalent to the result given in (2). (4) Rational velocity components are introduced, and the stress distribution is satisfied.  相似文献   

3.
The problem of the dispersed particulate-fluid two-phase flow in a channel with permeable walls under the effect of the Beavers and Joseph slip boundary condition is concerned in this paper. The analytical solution has been derived for the longitude pressure difference, stream functions, and the velocity distribution with the perturbation method based on a small width to length ratio of the channel. The graphical results for pressure, velocity, and stream function are presented and the effects of geometrical coefficients, the slip parameter and the volume fraction density on the pressure variation, the streamline structure and the velocity distribution are evaluated numerically and discussed. It is shown that the sinusoidal channel, accompanied by a higher friction factor, has higher pressure drop than that of the parallel-plate channel under fully developed flow conditions due to the wall-induced curvature effect. The increment of the channel’s width to the length ratio will remarkably increase the flow rate because of the enlargement of the flow area in the channel. At low Reynolds number ranging from 0 to 65, the fluids move forward smoothly following the shape of the channel. Moreover, the slip boundary condition will notably increase the fluid velocity and the decrease of the slip parameter leads to the increment of the velocity magnitude across the channel. The fluid-phase axial velocity decreases with the increment of the volume fraction density.  相似文献   

4.
The peristaltic flow of a Johnson-Segalman fluid in a planar channel is investigated in an induced magnetic field with the slip condition.The symmetric nature of the flow in a channel is utilized.The velocity slip condition in terms of shear stresses is considered.The mathematical formulation is presented,and the equations are solved under long wavelength and low Reynolds number approximations.The perturbation solutions are established for the pressure,the axial velocity,the micro-rotation component,the stream function,the magnetic-force function,the axial induced magnetic field,and the current distribution across the channel.The solution expressions for small Weissenberg numbers are derived.The flow quantities of interest are sketched and analyzed.  相似文献   

5.
Creeping channel flows of compressible fluids subject to wall slip are widely encountered in industries. This paper analyzes such flows driven by pressure in planar as well as circular channels. The analysis elucidates unsteady flows of Newtonian fluids subject to the Navier slip condition, followed by steady flows of viscoplastic fluids, in particular, Herschel–Bulkley fluids and their simplifications including power law and Newtonian fluids, that slip at wall with a constant coefficient or a coefficient inversely proportional to pressure. Under the lubrication assumption, analytical solutions are derived, validated, and discussed over a wide range of parameters. Analysis based on the derived solutions indicates that unsteadiness alters cross-section velocity profiles. It is demonstrated that compressibility of the fluids gives rise to a concave pressure distribution in the longitudinal direction, whereas wall slip with a slip coefficient that is inversely proportional to pressure leads to a convex pressure distribution. Energy dissipation resulting from slippage can be a significant portion in the total dissipation of such a flow. A distinctive feature of the flow is that, in case of the pressure-dependent slip coefficient, the slip velocity increases rapidly in the flow direction and the flow can evolve into a pure plug flow at the exit.  相似文献   

6.
In this work, the transient incompressible Couette flow and steady-state temperature profiles between two porous parallel plates for slightly rarefied gases are solved exactly. The first-order approximation of slip velocity at the boundaries is used in the formulation. The solution is also applicable for Couette flow in micro-channels under certain circumstances. The influences of mass transfer and a nondimensional slip parameter on slip velocities are discussed. It is also found that the transient slip velocities at the walls are greatly different from the steady-state velocity slips. The influences of velocity slip and temperature slip parameters on the temperature distribution and heat transfer at the walls are analyzed and discussed. It is shown that the slip parameters can greatly change the temperature profiles and heat transfer characteristics at the walls.  相似文献   

7.
页岩中的孔隙直径通常为纳米量级,基于连续流的达西定律已不能描述纳米级孔隙内的气体流动规律,一般采用附加滑移边界条件的Navier-Stokes方程对其进行描述. 由此可导出与压力相关的渗透率公式(称为"视渗透率"),并用来修正达西定律.因而,渗透率修正方法研究成为页岩气流动研究的热点之一.首先,基于Hagen-Poiseuille 流推导出一般形式二阶滑移模型下的速度分布和流量公式,并推导出相应的渗透率修正公式.该渗透率修正公式基本能将现有的滑移速度模型统一表达为对渗透率的修正. 基于一般形式的渗透率修正公式,重点研究了Maxwell, Hsia, Beskok与Ng 滑移模型速度分布渗透率修正系数、及其对井底压力的影响;提出了基于Ng 滑移速度模型的渗透率修正公式. 基于页岩实际储层温压系统及孔隙分布,计算了Kn 范围及储层条件下页岩气的流动形态,表明页岩气流动存在滑移流、过渡流与分子自由流. 而Ng 模型能描述Kn<88 的滑移流、过渡流、自由分子流的流量规律,因此可以用于描述页岩实际储层中页岩气的流动特征. 计算表明,随着Kn 的增加,不同滑移模型下的渗透率修正系数差异增大.Maxwell与Hsia模型适用于滑移流与过渡流早期,Beskok与Ng 模型可描述自由分子流下的流动规律,但二者在虚拟的孔径均为10nm页岩中,井底压力的差别开始显现;在虚拟的孔径均为1nm页岩中,井底压力的差别开始明显.   相似文献   

8.
The effects of a velocity slip and an external magnetic field on the flow of biomagnetic fluid (blood) through a stenosed bifurcated artery are investigated by using ANSYS FLUENT. Blood is regarded as a non-Newtonian power-law fluid, and the magnetization and electrical conductivity are considered in the mathematical model. The no-slip condition is replaced by the first-order slip condition. The slip boundary condition and magnetic force are compiled in the solver by the user-defined function (UDF). Numerical solutions are obtained by the finite volume method based on a nonuniform grid structure. The accuracy and efficiency of the solver are verified through a comparison with the literature. The results are presented graphically for different parameter values, and the effects of the magnetic number, the magnetic source position, the vascular obstruction ratio, the slip parameter, and the power-law index on the flow and temperature fields are illustrated.  相似文献   

9.
The boundary layer flow and mass transfer toward an exponentially stretching porous sheet are analyzed in this paper. Velocity slip is considered instead of the no-slip condition on the boundary. Self-similar equations are obtained by using similarity transformations. Numerical solutions of these equations are obtained by the shooting method. It is found that the fluid velocity and concentration decrease with increasing slip parameter. The fluid velocity decreases with increasing suction parameter.  相似文献   

10.
Summary The effects of a constant external magnetic field on the laminar, fully developed flow of an electrically conducting incompressible rarefied gas in a nonconducting parallel-plate channel are studied. Consideration is given to the slip-flow regime, wherein a gas velocity discontinuity occurs at the channel walls. It is found that the magnitude of the slip velocity is unaffected by the magnetic-field strength for a given pressure drop, but that the mean gas velocity and wall friction coefficient are functions of both the velocity slip coefficient and the magnetic-field strength. The effect of a second-order slip-flow boundary condition is briefly discussed.  相似文献   

11.
This investigation deals with the influence of slip condition on the magnetohydrodynamic (MHD) and rotating flow of a generalized Oldroyd-B (G.Oldroyd-B)fluid occupying a porous space.Fractional calcul...  相似文献   

12.
A nodally exact convection–diffusion–reaction scheme developed in Cartesian grids is applied to solve the flow equations in irregular domains within the framework of immersed boundary (IB) method. The artificial momentum forcing term applied at certain points in the flow and inside the body of any shape allows the imposition of no‐slip velocity condition to account for the body of complex boundary. Development of an interpolation scheme that can accurately lead to no‐slip velocity condition along the IB is essential since Cartesian grid lines generally do not coincide with the IB. The results simulated from the proposed IB method agree well with other numerical and experimental results for several chosen benchmark problems. The accuracy and fidelity of the IB flow solver to predict flows with irregular IBs are therefore demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The phenomenon of slip is known to strongly influence the performance of centrifugal pumps. In the present work, the slip phenomenon at the impeller outlet is studied experimentally for five industrial pumps at different flow rates and the slip factor is estimated for each of these cases. Theoretical slip factors are calculated using several existing methods taking into consideration the main geometric parameters of the impeller. Then the experimental slip factors are compared with the calculated theoretical values.It was observed that in the design-point condition of the pumps, the experimental values are in a good agreement with the theoretical values. However, there are significant disagreements between the theoretical and experimental values at off-design regiments. The difference is more apparent at low flow rates. It is also found that the slip factor depends on the impeller-outlet velocity profile. By defining a flow distortion coefficient, a correlation is derived for evaluating the slip-factor value for off-design conditions.Finally, a slip factor table is provided to calculate the slip factor in centrifugal pumps, using the geometry of impeller.  相似文献   

14.
The no‐slip condition is an assumption that cannot be derived from first principles and a growing number of literatures replace the no‐slip condition with partial‐slip condition, or Navier‐slip condition. In this study, the influence of partial‐slip boundary conditions on the laminar flow properties past a circular cylinder was examined. Shallow‐water equations are solved by using the finite element method accommodating SU/PG scheme. Four Reynolds numbers (20, 40, 80, and 100) and six slip lengths were considered in the numerical simulation to investigate the effects of slip length and Reynolds number on characteristic parameters such as wall vorticity, drag coefficient, separation angle, wake length, velocity distributions on and behind the cylinder, lift coefficient, and Strouhal number. The simulation results revealed that as the slip length increases, the drag coefficient decreases since the frictional component of drag is reduced, and the shear layer developed along the cylinder surface tends to push the separation point away toward the rear stagnation point so that it has larger separation angle than that of the no‐slip condition. The length of the wake bubble zone was shortened by the combined effects of the reduced wall vorticity and wall shear stress which caused a shift of the reattachment point closer to the cylinder. The frequency of the asymmetrical vortex formation with partial slip velocity was increased due to the intrinsic inertial effect of the Navier‐slip condition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Numerical simulation of Poiseuille flow of liquid Argon in a nanochannel using the non-equilibrium molecular dynamics simulation (NEMD) is performed. The nanochannel is a three-dimensional rectangular prism geometry where the concerned numbers of Argon atoms are 2,700, 2,550 and 2,400 at 102, 108 and 120 K. Poiseuille flow is simulated by embedding the fluid particles in a uniform force field. An external driving force, ranging from 1 to 11 PN (Pico Newton), is applied along the flow direction to inlet fluid particles during the simulation. To obtain a more uniform temperature distribution across the channel, local thermostating near the wall are used. Also, the effect of other mixing rules (Lorenthz–Berthelot and Waldman–Kugler rules) on the interface structure are examined by comparing the density profiles near the liquid/solid interfaces for wall temperatures 108 and 133 K for an external force of 7 PN. Using Kong and Waldman–Kugler rules, the molecules near the solid walls were more randomly distributed compared to Lorenthz–Berthelot rule. These mean that the attraction between solid–fluid atoms was weakened by using Kong rule and Waldman–Kugler rule rather than the Lorenthz–Berthelot rule. Also, results show that the mean axial velocity has symmetrical distribution near the channel centerline and an increase in external driving force can increase maximum and average velocity values of fluid. Furthermore, the slip length and slip velocity are functions of the driving forces and they show an arising trend with an increase in inlet driving force and no slip boundary condition is satisfied at very low external force (<1 PN).  相似文献   

16.
A model of laminar flow of a highly concentrated suspension is proposed. The model includes the equation of motion for the mixture as a whole and the transport equation for the particle concentration, taking into account a phase slip velocity. The suspension is treated as a Newtonian fluid with an effective viscosity depending on the local particle concentration. The pressure of the solid phase induced by particle-particle interactions and the hydrodynamic drag force with account of the hindering effect are described using empirical formulas. The partial-slip boundary condition for the mixture velocity on the wall models the formation of a slip layer near the wall. The model is validated against experimental data for rotational Couette flow, a plane-channel flow with neutrally buoyant particles, and a fully developed flow with heavy particles in a horizontal pipe. Based on the comparison with the experimental data, it is shown that the model predicts well the dependence of the pressure difference on the mixture velocity and satisfactorily describes the dependence of the delivered particle concentration on the flow velocity.  相似文献   

17.
The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible,and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability,Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.  相似文献   

18.
The oscillating flow instability of a molten linear high-density polyethylene is carefully studied using a single screw extruder equipped with a transparent slit die. Experiments are performed using laser Doppler velocimetry in order to obtain the local velocities field across the entire die width. At low flow rate, the extrusion is stable and steady state velocity profiles are obtained. During the instability, the velocity oscillates between two steady state limits, suggesting a periodic stick-slip transition mechanism. At high flow rate, the flow is mainly characterized by a pronounced wall slip. We show that wall slip occurs all along the die land. An investigation of the slip flow conditions shows that wall slip is not homogeneous in a cross section of the slit die, and that pure plug flow occurs only for very high flow rates. A numerical computation of the profile assuming wall slip boundary conditions is done to obtain the true local wall slip velocity. It confirms that slip velocities are of the same order of magnitude as those measured with a capillary rheometer.  相似文献   

19.
The aim of the present paper is to study flow and heat transfer characteristics of a viscous Casson thin film flow over an unsteady stretching sheet subject to variable heat flux in the presence of slip velocity condition and viscous dissipation. The governing equations are partial differential equations. They are reduced to a set of highly nonlinear ordinary differential equations by suitable similarity transformations. The resulting similarity equations are solved numerically with a shooting method. Comparisons with previous works are made, and the results are found to be in excellent agreement. In the present work, the effects of the unsteadiness parameter, the Casson parameter, the Eckert number, the slip velocity parameter, and the Prandtl number on flow and heat transfer characteristics are discussed. Also, the local skin-friction coefficient and the local Nusselt number at the stretching sheet are computed and discussed.  相似文献   

20.
Generalizing Navier’s partial slip condition, the flow due to a rough or striated plate moving in a rotating fluid is studied. It is found that the motion of the plate, the fluid surface velocity, and the shear stress are in general not in the same direction. The solution is extended to the case of finite depth, or Couette slip flow in a rotating system. In this case an optimum depth for minimum drag is found. The solutions are also closed form exact solutions of the Navier–Stokes equations. The results are fundamental to flows with Coriolis effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号