首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer of Intrinsic Microporosity (i.e. PIM-1) has been crosslinked thermally via nitrene reaction using polyethylene glycol biazide (PEG-biazide) as a crosslinker. The crosslinking temperature was optimized using TGA coupled with FT-IR spectroscopy. The dense membranes containing different ratios of PIM-1 to PEG-biazide were cast from chloroform solution. Crosslinking of PIM-1 renders it insoluble even in excellent solvents for the uncrosslinked polymer. The resulting crosslinked membranes were characterized by FT-IR spectroscopy, TGA and gel content analysis. The influence of crosslinker content on the gas transport properties of PIM-1, its density and fractional free volume (FFV) were investigated. Compared to the pure PIM-1 membrane, the crosslinked PIM-1 membranes showed better gas separation performance especially for CO2/N2, CO2/CH4 and propylene/propane (C3H6/C3H8) gas pairs and as well as suppressed penetrant-induced plasticization under high CO2 pressure.  相似文献   

2.
Blend membranes of chitosan and N-methylol nylon 6 were prepared by solution blending. Their pervaporation performances for the separation of ethanol–water mixtures were investigated in terms of acid (H2SO4) post-treatment, feed concentration, blend ratio and temperature. The pervaporation performance of the blend membranes was significantly improved by ionizing with H2SO4. The blend ratio of chitosan and N-methylol nylon 6 plays a different role at feed solutions of low and high water content. At a feed solution having low water content, an increase in chitosan content caused a decrease in permeability and an increase in separation factor. At a feed solution having high water content, the permeability increases with an increase in chitosan content, while the separation factor shows a maximum value around 60 wt% chitosan. It is proposed that extra permeation channels generated from the phase separation boundary between ionized chitosan and N-methylol nylon 6 account for the abnormal temperature dependence of pervaporation performance of the blend membranes.  相似文献   

3.
Polymers of intrinsic microporosity (PIMs) are promising materials for membrane separation because their special rigid and contorted structures contribute to high permeability. However, their chain rearrangement to fill excessive free volume makes the permeability stability a tough challenge. In this work, we report on a new use of rutile nano-TiO2 to mitigate the physical aging of PIM-1 (a typical PIM) nanofilms for stable permeability by mixing matrix. It was shown that the PIM-1 membrane incorporated with nano-TiO2 displayed remarkably higher aging resistance with a lower swelling degree in long-term ethanol soaking, having more stable ethanol permeance with only a 5% decrease after 35 days, lower than 25% of the pure one. The mechanism of anti-aging was revealed by molecular simulation, thermal, tensile mechanical, and dynamic mechanical analysis. It was found that nano-TiO2 had good compatibility with PIM-1 due to strong coordination interaction, making its uniform dispersion in polymer. Additional solvent permeation channels were also created to increase solvent permeance without compromising solute rejection. Due to the reliable interaction of nano-TiO2, which makes particles serve as physical crosslinking points, the movement of PIM-1 chains was limited partially to mitigate aging, enabling PIM-1-based membranes to have robust solvent permeation.  相似文献   

4.
Transport of CH4, C2H4 and C2H6 in poly(phenylene oxides) membranes at low pressures has been studied. The relation between the free volume and permeability of the polymers was analyzed in terms of the `dual-sorption' model. The accessible free volume of the polymers was estimated assuming the density of a sorbed fluid is equal to the density of the corresponding liquid. Transient separation of the three-component mixture CH4/C2H4/C2H6 was studied.  相似文献   

5.
Recently, high-free volume, glassy ladder-type polymers, referred to as polymers of intrinsic microporosity (PIM), have been developed and their reported gas transport performance exceeded the Robeson upper bound trade-off for O2/N2 and CO2/CH4. The present work reports the gas transport behavior of PIM-1/silica nanocomposite membranes. The changes in free volume, as well as the presence and volume of the void cavities, were investigated by analyzing the density, thermal stability, and nano-structural morphology. The enhancement in gas permeability (e.g., He, H2, O2, N2, and CO2) with increasing filler content shows that the trend is related to the true silica volume and void volume fraction.  相似文献   

6.
A facile preparation strategy was proposed for preparation of compact zeolite LTA membranes on polyethyleneimine(PEI) modified substrates without seeding.Through the functionalization of substrates by using PEI,compact LTA membranes can be formed on various kinds of substrates.A well-intergrown and phase-pure LTA membrane with a thickness of about 3.0 μm is successfully prepared on the a-Al_2 O_3 disk after crystallization for 24 h at 60℃.Besides LTA membrane,wellintergrown zeolite FAU membranes can also be formed on PEI-modified a-Al_2 O_3 substrates,suggesting the universality of this strategy.The zeolite LTA membranes synthesized on PEI-modified a-Al_2 O_3 tubes we re evaluated fo r the separation of alcohols/water mixture through pervaporation.The as-synthesized zeolite LTA membranes display high pervaporation performances.For the separation of 10 wt% isopropanol/water solution at 90℃,a high separation factor of44991 and a water flux of 1.73 kg m ~2 h ~1 are achieved.  相似文献   

7.
The membrane separation of the four-component mixture of gaseous alkanes C1–C4 is studied. Homogeneous films based on two high-permeable polymers, namely, addition-type poly[3-(trimethylsilyl)tricyclononene-7] and poly[3,4-bis(trimethylsilyl)tricyclononene-7], are used as membranes. Separation of the multicomponent mixture of hydrocarbons on these polymers follows the same trends as separation of binary mixtures CH4-C4H10 on polyacetylenes. In the presence of higher hydrocarbons, the permeability coefficients of methane decrease and the permeates become enriched with higher hydrocarbons. During separation of the multicomponent mixture, permeability coefficients P(C4H10) attain high values (up to 12000 Barrers).  相似文献   

8.
Poly(methyl methacrylate) membranes of different fractional free volume (FFV) were prepared by dry casting from different solvents. Free volume data were determined by means of Bondi method and positron annihilation lifetime spectroscopy (PALS). It was found that both the boiling point and the solubility parameter of casting solvent affect the membrane’s free volume. It was believed that the difference in free volume was arisen from the difference in polymer packing.The gas permeability is higher when membranes are cast from higher molecular weight PMMA. But the plasticizing effect of CO2 is less serious compared with the low molecular weight one. The high molecular weight PMMA membrane also has an extremely high O2/N2 selectivity, indicating its high structure uniformity. These results indicate that membranes made from polymer of higher molecular weight have the advantages of high permeability, gas selectivity and are less sensitive to CO2 plasticization. The intrinsic gas transport properties such as the permeability, solubility and diffusivity of O2, N2, and CO2 are measured or calculated. The effects of fractional free volume on membrane gas separation properties were investigated. It was found that the fractional free volume had no definite effects on gas solubility, but the gas permeability and diffusivity increased accordingly to the measured free volume.  相似文献   

9.
The possibility of formation of the mixed matrix membranes NH2—MIL-101(Al) under the conditions of microwave activation of the reaction mixture at atmospheric pressure is studied. Microwave irradiation affects the morphology and crystallite size and significantly shortens the synthesis time (from tens of hours to 10—30 min). The obtained samples of NH2—MIL-101(Al) with a crystallite size of 100 nm were used as nanofillers for polymer matrix based on the PIM-1 polymer with intrinsic microporosity for the preparation of hybrid membrane materials. Gas permeability for a series of gases was measured on the synthesized membranes.  相似文献   

10.
A detailed study of gas permeation, thermodynamic properties and free volume was performed for a novel polymer of intrinsic microporosity (PIM-1). Gas permeability was measured using both gas chromatographic and barometric methods. Sorption of vapors was studied by means of inverse gas chromatography (IGC). In addition, positron annihilation lifetime spectroscopy (PALS) was employed for investigation of free volume in this polymer. An unusual property of PIM-1 is a very strong sensitivity of gas permeability and free volume to the film casting protocol. Contact with water in the process of film preparation resulted in relatively low gas permeability (P(O2) = 120 Barrer), while soaking with methanol led to a strong increase in gas permeability (P(O2) = 1600 Barrer) with virtually no evidence of fast aging (decrease in permeability) that is typical for highly permeable polymers. For various gas pairs (O2/N2, CO2/CH4, CO2/N2) the data points on the Robeson diagrams are located above the upper bound lines. Hence, a very attractive combination of permeability and selectivity is observed. IGC indicated that this polymer is distinguished by the largest solubility coefficients among all the polymers so far studied. Free volume of PIM-1 includes relatively large microcavities (R = 5 Å), and the results of the PALS and IGC methods are in reasonable agreement.  相似文献   

11.
Thin membranes (900 nm) were prepared by direct transformation of infiltrated amorphous precursor nanoparticles, impregnated in a graphene oxide (GO) matrix, into hydroxy sodalite (SOD) nanocrystals. The amorphous precursor particles rich in silanols (Si?OH) enhanced the interactions with the GO, thus leading to the formation of highly adhesive and stable SOD/GO membranes via strong bonding. The cross‐linking of SOD nanoparticles with the GO in the membranes promoted both the high gas permeance and enhanced selectivity towards H2 from a mixture containing CO2 and H2O. The SOD/GO membranes are moisture resistance and exhibit steady separation performance (H2 permeance of about 4900 GPU and H2/CO2 selectivity of 56, with no degradation in performance during the test of 50 h) at high temperature (200 °C) under water vapor (4 mol %).  相似文献   

12.
Thin membranes (900 nm) were prepared by direct transformation of infiltrated amorphous precursor nanoparticles, impregnated in a graphene oxide (GO) matrix, into hydroxy sodalite (SOD) nanocrystals. The amorphous precursor particles rich in silanols (Si−OH) enhanced the interactions with the GO, thus leading to the formation of highly adhesive and stable SOD/GO membranes via strong bonding. The cross-linking of SOD nanoparticles with the GO in the membranes promoted both the high gas permeance and enhanced selectivity towards H2 from a mixture containing CO2 and H2O. The SOD/GO membranes are moisture resistance and exhibit steady separation performance (H2 permeance of about 4900 GPU and H2/CO2 selectivity of 56, with no degradation in performance during the test of 50 h) at high temperature (200 °C) under water vapor (4 mol %).  相似文献   

13.
Membrane technologies that do not rely on heat for industrial gas separation would lower global energy cost. While polymeric, inorganic, and mixed‐matrix separation membranes have been rapidly developed, the bottleneck is balancing the processability, selectivity, and permeability. Reported here is a softness adjustment of rigid networks (SARs) strategy to produce flexible, stand‐alone, and molecular‐sieving membranes by electropolymerization. Here, 14 membranes were rationally designed and synthesized and their gas separation ability and mechanical performance were studied. The separation performance of the membranes for H2/CO2, H2/N2, and H2/CH4 can exceed the Robeson upper bound, among which, H2/CO2 separation selectivity reaches 50 with 626 Barrer of H2 permeability. The long‐term and chemical stability tests demonstrate their potential for industrial applications. This simple, scalable, and cost‐effective strategy holds promise for the design other polymers for key energy‐intensive separations.  相似文献   

14.
清液体系中T型分子筛膜的高重复性合成与渗透汽化性能   总被引:1,自引:0,他引:1  
以自制微米级分子筛为晶种,在清液体系中成功合成出高性能的T型分子筛膜,考察了硅铝比、水硅比、碱度及合成温度与时间等条件对膜的生长和渗透汽化性能的影响.结果表明,在摩尔组成为1SiO2:0.015Al2O3:0.41(Na2O+K2O):30H2O的清液体系中,于423K晶化6h的条件下可较快地形成一层厚度为5μm的连续致密纯相T型分子筛膜,较大缩短了膜合成时间且提高了膜致密性.在优化条件下所合成的膜具有优良的分离性能和高重复性.348K时,在10wt%水-90wt%异丙醇混合物体系中膜的渗透通量和分离因子分别高达4.20kg/(m2·h)和7800.  相似文献   

15.
Gas transport properties of novel hyperbranched polyimide/hydroxy polyimide blends and their silica hybrid membranes were investigated. Gas permeability coefficients of the blend membranes showed positive deviation from a semilogarithmic additive rule. The enhanced gas permeability were resulted from the increase in free volume elements caused by the intermolecular interaction between terminal amine groups of the hyperbranched polyimide and hydroxyl groups of the hydroxy polyimide backbone. Additionally, CO2/CH4 separation ability of the blend membranes was markedly promoted by hybridization with silica. The remarkable CO2/CH4 separation behavior was considered to be due to characteristic distribution and interconnectivity of free volume elements created by the incorporation of silica. For the hyperbranched polyimide/hydroxy polyimide blend system, polymer blending and hybridization techniques synergistically provided the excellent CO2/CH4 separation ability.  相似文献   

16.
The transport properties of membranes based on polyimide-polyaniline composites are studied in the pervaporation separation of a methanol-toluene binary azeotropic mixture. The morphology of the membranes is investigated by electronic microscopy, and the wettability of their surface is analyzed by contact-angle measurements. Special attention is given to the study of sorption and diffusion characteristics of membranes affecting the selectivity and rate of membrane separation. It is found that the incorporation of polyaniline into the matrix of the aromatic polyimide facilitates a reduction in the density of the composites relative to that of the nonmodified polyimide. It is shown that the membranes based on the polyimide-polyaniline composites are more selective with respect to methanol and show lower permeability during pervaporation of the methanol-toluene mixture than polyimide membranes.  相似文献   

17.
Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend composition and of the feed mixture composition. The results showed that a polymer blending method could be very useful to develop new membranes with improved permselectivity. The pervaporation properties could be optimized by adjusting the blend composition. All the blend membranes tested showed a decrease in flux with increasing poly(vinyl alcohol) content for both methanol—toluene and ethanol—toluene liquid mixtures. The alcohols permeated preferentially through all tested blend membranes, and the selectivity values increased with increasing poly(vinyl alcohol) content. The pervaporation characteristics of the blend membranes were also strongly influenced by the feed mixture composition. The fluxes increased exponentially with increasing alcohol concentration in the feed mixtures, whereas the selectivities decreased for both liquid mixtures.  相似文献   

18.
制备了活性层厚度为1~10μm的PVA/PAN渗透汽化复合膜并将其用于乙醇水混合物的分离。实验结果表明,热处理条件对复合膜的分离选择性、渗透通量及分离指数具有明显影响。确定了最佳热处理条件。  相似文献   

19.
Chitosan composite membranes having a microporous polysulfone substrate were prepared and tested for the pervaporation dehydration of aqueous isopropanol mixtures. When the composite membrane experienced excessive swelling at the feed mixture of high water content, the composite membranes were found to be segregated in structure due to the opposite characteristics to water of chitosan and polysulfone. Efforts to enhance the structural stability under various pervaporation operational conditions were made. The polysulfone substrate was immersed into hydrophilic binding polymer solutions such as polyvinyl alcohol, polyacrylic acid, and hydroxyethylcellulose before the casting of chitosan layer to increase the affinity between the thin chitosan layer and porous polysulfone layer which resulted in increased geometrical stability of the chitosan/polysulfone composite membranes. The chitosan layer was crosslinked with glutaraldehyde and H2SO4 in acetone solution to control the permselectivity.  相似文献   

20.
The preparation and characterisation of adsorption-selective carbon membranes (ASCMs) is described. ASCMs can separate the components of a gas mixture depending on their adsorption strength. These membranes allow the separation of non-adsorbable or weakly adsorbable components (e.g. N2, H2, O2, etc) from the more strongly adsorbable components (e.g. hydrocarbons) in a gas mixture. They are prepared from the deposition of a thin film of a phenolic resin on the inner face of an alumina tube. Air oxidative treatment at temperatures in the range of 300–400°C, prior to carbonisation (pre-oxidation) or after carbonisation (under vacuum at 700°C) (post-oxidation) gives rise to an adsorption-selective carbon membrane. This membrane shows a high permeability and selectivity towards the separation of gas mixtures formed by hydrocarbons and N2. Taking into account the permeation and separation properties of the membranes, post-oxidation treatment is shown to be more effective than pre-oxidation. The separation characteristics of the carbon membranes are dependent on the composition of the gas mixture (i.e. proportion of more strongly adsorbable components) and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号