共查询到19条相似文献,搜索用时 109 毫秒
1.
莲子是我国重要的药食同源食物,与莲子营养价值相当、便于食用的莲子粉备受消费者青睐。为保证莲子粉的品质,利用近红外光谱(NIRs)技术对掺杂小麦粉、玉米粉和地瓜粉的莲子粉进行鉴定,在样品类别已知下利用支持向量机(SVM)、最小二乘支持向量机(LS-SVM)、偏最小二乘法-判别分析(PLS-DA)模型进行判别,在样品类别未知下基于聚类算法进行判别。同时,对莲子粉中水分含量利用偏最小二乘(PLS)回归进行定量分析。结果表明,LS-SVM模型对纯莲子粉样品与掺入小麦粉、玉米粉和地瓜粉的莲子粉样品的判别率达到100%;基于聚类算法能够有效识别掺入5%地瓜粉、小麦粉和玉米粉的莲子粉样品;PLS模型对莲子粉中水分含量预测综合性能良好,其中经过标准化预处理得到模型效果最佳,其R2c,RMSEC,R2p和RMSEP分别达到0.973 2,0.111 5,0.969 5和0.118 9。近红外光谱技术能为隐蔽的莲子粉掺杂的鉴别以及莲子粉中水分含量监控提供一种快速、准确、无损检测的分析方法,为保证高档次莲子品质提供一种有益的思路。 相似文献
2.
基于近红外光谱技术的油菜叶片丙二醛含量快速检测方法研究 总被引:5,自引:0,他引:5
应用近红外光谱技术实现了油菜叶片中丙二醛(MDA)含量的快速无损检测.对90个油菜叶片样本进行光谱扫描,用60个样本建模,30个样本验证.经过平滑、变量标准化、一阶及二阶求导、去趋势等预处理后,建市了MDA预测的偏最小二乘法(PLS)模型.将PLS提取的有效特征变馈(LV)和连续投影算法(SPA)提取的有效波长作为最小二乘-支持向量机(LS-SVM)的输入变量,分别建立了LV-LS-SVM和SPA-LS-SVM模型.以预测集的预测相关系数(r),预测标准偏差(RMSEP)作为模型评价指标.结果表明,油菜叶片中MDA含量预测的最优模型为LV-LS-SVM模型,LV-LS-SVM在去趋势处理后的预测效果为r=0.999 9,RMSEP=0.530 2;在二阶求导处理后的预测效果为r=0.999 9,RMSEP=0.395 7.说明应用光谱技术检测油菜叶片中MDA的含最是可行的,并能获得满意的预测精度,为油菜大田生长状况的动态连续监测提供了新的方法. 相似文献
3.
牛奶中三聚氰胺的可见/近红外光谱快速判别分析方法的研究 总被引:4,自引:0,他引:4
为探讨基于可见一近红外光谱技术快速检测牛奶中是否含有三聚氰胺的可行性.文章通过往液态奶中添加不同含量的三聚氰胺,共制备样本160个.利用Handheld Field Spec光谱仪获取样本光谱,其后采用不同的预处理方法对光谱数据进行预处理,然后分别建立数学模型,比较模型的好坏,得到采用移动平均平滑作为数据的预处理方法较好.从160个样本中随机的取出120个样本建模,剩下的40个样本作为独立的验证集.采用偏最小二乘回归法(PLS)和最小二乘支持向苗机法(LS-SVM)方法分别建立判别分析模型,利用独立的验证集对判别模型进行了预测验证.预测结果的预测相关系数(R2)分别为0.917 4(PLS)和0.910 9(LS-SVM),预测标准误差(RMSEP)分别为0.030 4(PLS)和0.046 7(LS-SVM).研究结果表明近红外反射光谱可以作为一种快速检测牛奶中三聚氰胺的方法. 相似文献
4.
应用近红外光谱技术快速检测果醋糖度 总被引:7,自引:0,他引:7
为了对果醋糖度值进行快速准确检测,应用近红外光谱技术并结合最小二乘支持向量机分析方法建立了果醋糖度检测模型.应用近红外透射光谱获取五种类型共计300份果醋样本的光谱透射曲线,利用主成分分析方法对原始光谱数据进行降维处理,根据主成分的累计贡献率选取6个主成分.选取的主成分即作为光谱优化特征子集以替代原来复杂的光谱数据.随后将300份果醋样本数据随机分为定标集和预测集,利用最小二乘支持向量机在225个定标集样本数据基础上建立起果醋糖度预测模型,应用此模型对75个预测集样本进行糖度预测.根据预测均方根误差(RMSEP)和预测结果的相关系数(r)对预测模型进行评价,利用此模型得到的样本糖度预测值r=0.993 9,RMSEP=0.363,均达到了较好的预测效果. 相似文献
5.
提出一种利用可见/近红外光谱技术进行杉木林土壤全氮测定的方法.利用不同方法实现了土壤光谱的预处理,并以偏最小二乘回归算法(PLS)建立土壤氮含量估测模型对其进行比较分析,发现小波除噪结合多远散射校正能最有效地消除原始光谱的噪声与背景信息,此时PLS模型校正集与预测集R2分别为0.891与0.885.为优化模型,对预处理后的光谱数据采用主成分分析法(PCA)降维,以最小二乘支撑向量机回归算法(LS-SVR)建立了土壤氮含量估测模型,其校正集与预测集R2分别提高至0.921与0.917,具有比PLS算法更高的精度.结果表明:以可见/近红外光谱技术进行林地土壤氮含量快速监测是可行的,其中小波去噪结合多元散射校正系光谱预处理的优选方法,而LS-SVR则是建模的优选方法. 相似文献
6.
基于可见-近红外光谱和多光谱成像技术的梨损伤检测研究 总被引:3,自引:0,他引:3
提出了利用可见-近红外光谱技术和多光谱成像技术检测鸭梨损伤随时间及程度变化的新方法.利用可见-近红外光谱技术,分别结合偏最小二乘(panial least squares,PLS)和最小二乘支持向量机(least squares-support vector machine,LS-SVM)方法对鸭梨受损程度和受损天数进行预测.结果表明,两种方法在鸭梨损伤后期对损伤程度的判别均具有较好的效果;LS-SVM方法对鸭梨轻度损伤的损伤天数的预测精度较高,但重度损伤天数的预测效果不如PLS方法.然后利用多光谱图像预测鸭梨受损天数.研究发现,利用LS-SVM建立的模型预测效果较稳定,预测结果相关系数均在0.85左右.说明利用可见-近红外光谱分析技术和多光谱成像技术能够快速无损地检测出鸭梨的损伤程度及时间,为鸭梨检测提供了一种新方法. 相似文献
7.
多因变量LS-SVM回归算法及其在近红外光谱定量分析中的应用 总被引:1,自引:0,他引:1
以LS-SVM算法为基础,建立了权重可优化的多因变量LS-SVM回归模型,给出了相应的算法(MIS-SVM),并从理论上说明了它与IS-SVM的关系.以64个高粱样品为实验材料,其中建模集与预测集中样品的比例为51:13.从区间[0,1]之间均匀地随机选取5组权重,根据预测平均相对误差最小的准则,按照LOO方式确定了一组合适的权重及参数,建立了近红外光谱同时分析三个化学组分蛋白质、赖氨酸和淀粉的多因变量定量分析模型.结果得到三个组分模型的预测值与实际值的平均相对误差分别为1.65%,6.47%和1.37%,相关系数分别为0.994 0,0.839 2和0.882 5,而LS-SVM算法建模预测三个组分的平均相对误差分别为1.68%,6.25%和1.47%,相关系数分别为0.994 1,0.831 0和0.880 0.可见MIS-SVM算法与LS-SVM算法的建模分析效果相当,且都取得了较满意的结果,验证了MLS-SVM算法同时定量分析多组分含量的可行性.另外,文章也验证了不同权重对MLS-SVM算法的预测性能有一定影响,由此表明在实际多因变量建模分析中对权重进行优化是必要的. 相似文献
8.
PCA和SPA的近红外光谱识别白菜种子品种研究 总被引:2,自引:0,他引:2
为了实现对不同品种白菜种子的快速无损鉴别,应用近红外光谱技术获取白菜种子的光谱反射率,首先采用变量标准化校正和多元散射校正对原始光谱进行预处理;其次,采用主成分分析法(PCA)对光谱数据进行聚类分析,从定性分析的角度得到三种不同白菜种子的特征差异,并采用连续投影算法(SPA)选取特征波长;最后,分别基于全波段光谱、PCA分析得到的前3个主成分变量以及SPA算法选取的特征波长,建立了最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型进行白菜种子不同品种的鉴别。从主成分PC1、PC2得分图中可以看出,主成分1和2对不同种类白菜种子具有很好的聚类作用。基于特征波长建立的PLS-DA和LS-SVM模型的判别结果优于基于主成分变量建立的模型,其中基于特征波长建立的LS-SVM模型识别效果最优,建模集和预测集的品种识别率均达到100%。结果表明,通过SPA算法选取的6个特征波长变量能够很好的反映光谱信息,提出的SPA算法结合LS-SVM预测模型能获得满意的分类结果,为白菜种子品种的识别提供了一种新方法。 相似文献
9.
近红外光谱分析技术识别奶粉中淀粉掺假的研究 总被引:1,自引:0,他引:1
将蒙牛、伊利、完达山三个品牌的奶粉样品掺入不同量的淀粉构成32份实验样品。在跨度近两个月时间内,用JDSU微型近红外光谱仪,分五天重复5次采集这些样品的中波近红外漫反射光谱。采用仿生模式识别(BPR)算法对样品进行掺假识别定性分析,并研究了分析的可靠性与模型的稳健性。以90%作为评价分析结果(样品掺杂的正确识别率 CAR与正确拒识率 CRR)的阈值:将测试结果高于此阈值的所有样品中掺入淀粉的最低含量分别称为样品掺杂的正确识别限与正确拒识限。结果显示:三个品牌奶粉样品分别各自建模时,若用同一天测定的部分光谱数据建立模型,预测该天剩余光谱,样品掺杂的正确识别限与正确拒识限都可以达到0.1%。对于三种品牌奶粉合并后的纯奶粉及其淀粉掺杂样品混合建模时,若用同一天测定的光谱建模与测试,样品掺杂的正确识别限也可以达到0.1%,正确拒识限则为1%;若用不同时间采集的光谱进行交叉测试,正确识别限与正确拒识限都只有5%;若用四天的光谱数据联合建模,测试第五天的数据,正确识别限可以稳定达到1%,正确拒识限可以达到5%。应用两种算法对奶粉中淀粉含量进行定量分析比较,进一步验证了有关定性分析对样品掺杂正确识别限和正确拒识限的可靠性。 相似文献
10.
应用近红外漫反射光谱对猪肉肉糜进行定性定量检测研究 总被引:5,自引:0,他引:5
利用傅里叶变换近红外漫反射光谱结合不同数学建模算法对不同部位取样的猪肉肉糜进行定性判别建模,并建立猪肉肉糜品质指标脂肪、蛋白质和水分含量的定量检测模型。结果表明:不同部位取样猪肉肉糜判别分析PLSDA模型性能良好,最优模型校正集判别正确率为100%,预测集判别正确率为96%;比较两种方法结合,不同光谱预处理建立各品质指标的定量模型,LS-SVM模型性能优于PLSR模型,脂肪和水分含量最佳预测模型校正及预测相关系数r均高于0.9,蛋白质含量最优模型校正及预测相关系数r,RMSEC,RMSEP和RMSECV分别为0.722,0.593,1.595,1.550和1.888,模型精度需进一步提高。研究表明利用傅里叶变换近红外漫反射光谱快速判别不同部位猪肉肉糜的方法是可行的,脂肪和水分含量定量分析模型从预测精度、稳定性及适应性考虑均具一定的通用性,具有良好的市场应用前景。 相似文献
11.
花椒是我国的八大调味料之一。目前花椒市场掺假现象较为多见,为实现掺假花椒粉的快速定性鉴别,采用了近红外光谱结合化学计量学方法进行了探讨。将麦麸粉、稻糠粉、玉米粉和松香粉以1 Wt/Wt.%的递增梯度分别掺入红花椒粉和青花椒粉中,制备掺假浓度范围为1~54 Wt/Wt.%的掺假花椒粉样品,以掺假花椒粉和纯花椒粉共462份样品依次采集其800~2 500 nm范围的漫反射近红外光谱。采用主成分分析法(PCA)对光谱数据进行分析,前3个主成分累计贡献率达98.72%,做出的得分图表明PCA法对掺假的花椒粉具有较好的区域划分。347份样本作为校正集,以特征谱区2 000~2 200 nm范围的257个采样点的光谱信号作为输入,采用判别偏最小二乘法(DPLS)和支持向量机(SVM)建立定性鉴别模型,经不同光谱预处理,对115份验证集样本进行预测,总体鉴别正确率在97.39%~100%之间,表明该方法是快速定性鉴别掺假花椒粉的一个有效手段。 相似文献
12.
近红外光谱检测已被应用于水泥生料成分的快速检测,但现场环境中的湿度等因素会对光谱产生干扰,从而降低检测精度。为了提高检测精度,在实验分析湿度对水泥生料近红外光谱检测影响的基础上研究了补偿方法。在水泥厂选取了24份水泥生料样本,其中18份作为校正集,6份作为验证集;水泥生料中的有效成分为SiO2,Al2O3,Fe2O3和CaCO3,各成分含量的标准值由X射线荧光光谱分析测出。首先,将校正集的18份样本每份重复装样测5次光谱,用得到的90个光谱建立模型Ⅰ;再每份样品制作5个湿度梯度样本,其获得过程为,先将样本放置在电加热平台上,用玻璃棒将样本摊平,180℃下加热30 min,再将样本放置在散热片上进行降温,待样品恢复室温后取出进行第一次光谱扫描,得到1个光谱,将测量后的样本放入搅拌器,使用装有去离子水的喷雾器对其喷雾两次,然后搅拌30 s混合均匀,测量混合后的样本得到下一个光谱,重复该过程,得到具有湿度梯度的5个光谱。所有样本均采用烘干法进行湿度测量,样本湿度变化区间在0.6%~2%以内。对每个湿度梯度的样本测量1次,用得到的这90个光谱建立模型Ⅱ。然后,将验证集的6份样本每份制作5个湿度梯度,获取方式与校正集相同,对每个湿度梯度的样本测量1次,得到30个光谱。所有光谱均采用多元散射校正预处理,拟合波段选择4000~5000 cm^-1,建模方法采用偏最小二乘法。比较同一份样本的5个湿度梯度,可以看到在5200 cm^-1处光谱差异最大,在其他位置也有肉眼可见的明显差异,因此,湿度变化对全波段光谱有明显的影响。最后,将这30个光谱输入模型Ⅰ与模型Ⅱ进行验证,并对比模型Ⅰ与模型Ⅱ的预测均方根误差RMSEP。模型Ⅱ中SiO2,Al2O3,Fe2O3和CaCO3的预测均方根误差RMSEP比模型Ⅰ分别减小了25%,31.3%,33.3%和25%。实验结果表明,水泥生料样本湿度对近红外光谱模型的预测结果具有一定的影响,采用具有湿度梯度的样本进行建模可有效降低湿度对预测结果的影响。 相似文献
13.
14.
采用支持向量机(support vector machine,SVM)建立了鱼糜样品中水分和蛋白质含量的近红外光谱校正模型,并采用独立样本集进行了预测。光谱数据经间隔两点一阶导数(DB1G2)、标准正态变换(SNV)、多元散射校正(MSC)相结合的方法预处理后,用偏最小二乘(PLS)降维处理,取前15个投影变量为自变量。获得水分模型的校正相关系数Rc、预测相关系数Rv、定标标准差SEE、预测标准差SEP; 蛋白质模型的校正相关系数Rc、预测相关系数Rv、定标标准差SEE、预测标准差SEP,有较好的预测准确性。基于SVM算法的近红外光谱技术可用于鱼糜水分和蛋白质含量的快速检测。 相似文献
15.
近红外漫反射光谱法测定玉米秸秆体外干物质消化率 总被引:8,自引:1,他引:8
以不同生态环境、不同年份,不同品种和自交系类型、不同生长发育时期以及不同部位的600个样品中选出161份玉米秸秆为材料,应用傅里叶变换近红外光谱技术,采用偏最小二乘回归法(PLS),通过比较不同光谱范围和光谱预处理方法,在6 101.7~5 773.8 cm-1和4 601.3~4 246.5 cm-1谱区内,建立了适合不同品种类型、不同生长发育时期和不同部位且适配范围广的近红外漫反射光谱(NIRS)测定玉米秸秆体外干物质消化率(in vitro dry matter digestion,IVDMD)的稳定校正模型。其交叉验证和外部验证决定系数(R2cv,R2val)分别为0.907 3和0.906 6,预测标准偏差为2.08%, 预测值与化学值间的相关系数(r)达0.956。结果表明, 近红外光谱技术可以用于快速、准确测定玉米秸秆IVDMD,该结果对青贮玉米育种过程中的秸秆材料快速鉴定和筛选具有重要的意义。 相似文献
16.
PLS-DA法判别分析木材生物腐朽的研究 总被引:6,自引:0,他引:6
利用近红外光谱结合PLS-DA判别分析方法可用于食品、药品和农产品等的快速识别或检测,因此,研究利用近红外光谱结合PLS-DA方法来检测木材的生物腐朽。研究结果表明:应用近红外光谱结合PLS-DA方法对培训集样本建立的判别模型,其校正及验证结果与实际分类变量的相关系数均超过0.94,SEC和SEP都低于0.17; 利用模型对未参与建模的样本进行检测,发现该模型对未腐朽、白腐和褐腐三种类型样本的判别准确率均为100%(偏差均小于0.5); 与SIMCA法相比,PLS-DA法对木材生物腐朽样本的判别准确率更高,说明应用近红外光谱结合PLS-DA方法能快速地检测到木材的生物腐朽,并能准确地判别出木材的生物腐朽类型。 相似文献
17.
基于近红外光谱的玉米籽粒CNCPS组分分析及预测研究 总被引:2,自引:0,他引:2
试验旨在研究应用近红外光谱技术快速测定玉米籽粒粉末CNCPS组分的可行性。65个样品来自黑龙江省,选用偏最小二乘法(PLS)为建模方法,采用二阶导数和Norris导数滤波法处理光谱数据后,建立了玉米籽粒粉末中干物质(DM)、粗蛋白质(CP)、粗脂肪(Fat)、粗灰分(Ash)、淀粉(Starch)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、可溶性蛋白(SP)、酸性洗涤不溶蛋白(ADIP)和中性洗涤不溶蛋白(NDIP)等的近红外预测模型。其中DM,CP,Fat,Ash,Starch,NDF和ADF的决定系数分别为0.974 3,0.968 3,0.947 8,0.909 8,0.977 7,0.935 4和0.926 9,标准差(SD)与预测均方根(RMSEP)的比值(SD/RMSEP)值分别为3.96,4.78,3.75,4.25,4.13,3.88和3.12。SP的决定系数为0.857 5,SD/RMSEP值为3.06。ADIP和NDIP的决定系数分别为0.531 9和0.683 3,SD/RMSEP值分别为5.50和2.85。试验结果表明,近红外技术可以用于玉米籽粒粉末CNCPS组分的快速测定,但降低ADIP和NDIP测定误差有待进一步研究。 相似文献
18.
近红外光谱快速分析技术及其在动物饲料和产品品质检测中的应用 总被引:3,自引:0,他引:3
近红外光谱是近年来发展最快、最引人注目的光谱学技术。主要介绍了近红外光谱技术的基本原理和发展, 包括近红外光谱预处理技术如微分处理、信号平滑等技术的发展和近红外光谱分析模型如多元线性回归、主成分分析、偏最小二乘法和人工神经网络等的发展。综述了国内外近几年来此技术在动物饲料和产品品质检测中的应用。文献调查显示, 近红外光谱分析技术以其快速、无损、不污染环境等诸多优点在国内外饲料和动物产品检测方面得到广泛应用。在饲料分析方面,近红外不仅能用于其常量成分干物质、粗蛋白、粗纤维、粗脂肪等的测定,而且能用于微量成分、有毒有害成分的测定。在动物产品分析方面,该技术已用于禽蛋、牛肉、羊肉、猪肉等的各种物理和化学指标的测定。文中详细给出了已经报道的利用近红外光谱技术测定饲料和动物产品测定指标和光谱处理以及模型建立的情况, 并讨论了近红外光谱快速检测技术的在饲料分析和动物产品分析领域的应用新趋势和局限性。 相似文献
19.
Piotr Chmielewski Valery A. Ozeryanskii Lucjan Sobczyk Alexander F. Pozharskii 《Journal of Physical Organic Chemistry》2007,20(9):643-648
The primary 1H/2H isotope effect for a number of protonated naphthalene proton sponges (DMAN‐s) was measured and correlated with the δ(1H) value and IR spectroscopic characteristics of the [NHN]+ hydrogen bonds. A particular role of the unusual anharmonicity expressed in the isotopic ratio ISR ? is discussed when the fundamental vibrational levels are close to the barrier top for proton/deuteron motion. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献