首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
闪电等离子体光谱特征是在强连续辐射背景上叠加丰富的NⅡ,NⅠ,OⅠ,HⅠ线状谱,闪电回击通道温度可达万开以上,通道内氮分子和氧分子接近完全离解,分析连续谱时,不考虑各组分分子带状谱对连续谱的影响.使用摄谱范围在400~1000 nm的无狭缝光栅摄谱仪记录云对地闪电放电光谱,在光谱可见区低频段观测到大量一价氮离子谱线,未...  相似文献   

2.
连续电流是闪电放电过程中的一个重要子物理过程,它是指雷暴云局部电荷中心在回击之后沿原通道对地的持续放电过程。在连续电流阶段,原本发光微弱的通道其亮度有时会突然增强,这种现象被称为叠加了M分量,自20世纪连续电流被发现以来,国内外学者进行了许多观测研究。目前主要是利用电磁学和光学的观测手段揭示其放电和发光的宏观特征,利用光谱观测对其通道内部微观的发光信息和物理特性等的研究还很缺乏。如关于连续电流阶段放电通道内的温度特性参数目前鲜有报道,而温度是研究闪电连续电流放电通道物理特性所必需的基本参量,也是预防连续电流引起的雷电灾害事故所关心的参数。依据由无狭缝高速光谱仪观测的一次云对地闪电首次回击后叠加三个M分量的连续电流过程的光谱资料,分析了整个放电过程中光谱的演化特征,计算了连续电流放电过程电流核心通道和外围电晕通道的温度,研究了两者随通道高度的变化特性。结果表明,在初始回击阶段,通道的光辐射主要是激发能较高的一次电离的氮离子辐射,在之后连续电流阶段,通道的光辐射则主要是激发能较低的中性氮、氧原子辐射。离子线辐射在回击初期时最强,氢Hα线和红外波段的中性原子线在M1时最强,连续谱在M2时最强。近红外波段的四条线OⅠ 777.4, NⅠ 746.8, 821.6和868.3 nm在整个放电过程都可以被观测到。在连续电流阶段,电流核心通道温度为42 060~43 940 K,比相应回击核心通道温度高6 020~7 900 K;外围电晕通道温度为16 170~20 500 K;通道核心温度和电晕温度均随时间变化不大;通道核心温度随通道上升呈减小趋势,而外围电晕温度随通道上升呈增大趋势。  相似文献   

3.
高启  张传飞  周林  李正宏  吴泽清  雷雨  章春来  祖小涛 《物理学报》2014,63(9):95201-095201
以"强光一号"Z箍缩装置10174发次光谱诊断实验结果为例,描述了一种对Z箍缩等离子体X辐射光谱分离提纯、诊断的方法.对连续辐射谱和特征辐射线谱进行分离,并从连续辐射谱和特征辐射线谱中提取了等离子体电子温度信息.结果显示:等离子体连续谱主要由等离子体中心的高温区(Te=290.7 eV±1.2 eV)和温度较低的壳层区域(Te=95.3 eV±8.3 eV)两部分叠加而成;特征辐射线谱主要反映了等离子体中心的高温区信息,根据非局域热动平衡模型计算提取的电子温度约为299—313 eV,与连续谱诊断结果基本符合.  相似文献   

4.
广东沿海地区闪电通道的温度特性研究   总被引:1,自引:1,他引:1  
在广东沿海地区,用无狭缝光栅摄谱仪获得了云对地闪电回击过程的光谱。经过光谱特征分析和谱线辨认,依据测得的谱线相对强度以及多组态Dirac-Fock方法得到的谱线跃迁参数,采用多谱线法,对每个闪电回击通道不同高度处的温度进行了定量计算。结果表明,强闪电放电过程对应的通道温度较高;分析通道不同高度处的温度值,发现对大多数闪电,同一回击通道随高度的增加温度略呈减小趋势;与青海高原相比,广东沿海地区强闪电较多, 光谱上激发能高的一次电离氧离子的跃迁谱线明显增多。  相似文献   

5.
闪电通道温度诊断中观测距离的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
王瑞燕  袁萍  岑建勇  王雪娟  王杰 《物理学报》2014,63(9):99203-099203
利用无狭缝光栅摄谱仪获得了青海高原地区云对地闪电首次回击过程的光谱,运用比尔-朗伯定律,考虑传播过程中谱线强度的衰减,计算讨论了观测距离对通道温度诊断结果的影响.结果表明,不同观测距离下得到的光谱诊断放电通道温度,其结果有一定差异;远距离观测得到的温度小于近距离观测的结果;观测距离越远,所得温度的误差越大.因此,在远距离观测的情况下,修正更为重要.由计算结果,得到了温度修正的半经验公式,由此,可以扣除观测距离对闪电通道温度诊断结果的影响.  相似文献   

6.
利用高速无狭缝光栅摄谱仪捕获到的一次闪电光谱资料,结合等离子体光谱理论,选用不同波段的光谱信息估算了闪电回击通道温度.结果表明:用不同波段的谱线组—单电离氮原子(NII)、中性氧原子(OI)和中性氮原子(NI),基于玻尔兹曼图法估算的闪电回击通道平均温度分别为43270 K,17660 K和17730 K;同时用NII和NI两个谱线组,基于萨哈-玻尔兹曼图法估算得到的闪电回击通道平均温度为24770 K.依据闪电通道电晕鞘模型和光谱辐射理论推断,单独选用NII谱线组获得的温度应该是闪电回击通道核心的温度,单独选用NI或OI谱线组获得的温度应该是围绕在闪电回击通道核心周围电晕鞘的温度;同时选用NII和NI谱线组,获得的温度应该是在曝光时间内整个通道截面(包括通道核心和电晕鞘)的平均温度.  相似文献   

7.
用无狭缝红外光谱仪获得了山东地区云对地闪电回击过程的近红外光谱,并与可见光波长范围的闪电回击光谱进行了对比分析.根据近红外光谱的结构特征,讨论了闪电通道等离子体的光谱辐射顺序以及不同波段连续光谱的主要辐射机制,研究得出:可见光谱主要是闪电回击初期和发展阶段的辐射|近红外光谱主要是闪电发展后期的辐射|可见波段的连续光谱主要来自韧致辐射的贡献,而红外部分的连续光谱主要来自复合辐射的贡献.由分析结果推断:闪电通道等离子体的复合过程是闪电产生O3、NOX的主要途径,复合过程中的氧吸附作用和去吸附过程是近红外光谱中氧原子谱线增多的重要原因,也是OI 777.4 nm相对强度比较大的主要原因.  相似文献   

8.
闪电放电通道的辐射演化特性   总被引:1,自引:0,他引:1  
用无狭缝红外光谱仪获得了山东地区云对地闪电回击过程的近红外光谱,并与可见光波长范围的闪电回击光谱进行了对比分析.根据近红外光谱的结构特征,讨论了闪电通道等离子体的光谱辐射顺序以及不同波段连续光谱的主要辐射机制,研究得出:可见光谱主要是闪电回击初期和发展阶段的辐射;近红外光谱主要是闪电发展后期的辐射;可见波段的连续光谱主要来自韧致辐射的贡献,而红外部分的连续光谱主要来自复合辐射的贡献.由分析结果推断:闪电通道等离子体的复合过程是闪电产生O3、NOX的主要途径,复合过程中的氧吸附作用和去吸附过程是近红外光谱中氧原子谱线增多的重要原因,也是OI777.4nm相对强度比较大的主要原因.  相似文献   

9.
利用以高速摄像机为记录系统组装的无狭缝摄谱仪,在青海地区获得了多次云对地闪电首次回击过程400-900 nm波长范围的时间分辨光谱,分别计算了闪电电流核心通道和外围发光通道的温度;结合空气等离子体的传输理论,获得了闪电通道的电导率,探讨了回击过程中通道温度及电导率的演化特征.结果表明,闪电电流核心通道的温度比外围通道高约5000-7000K,并且,与以往关于通道峰值温度持续时间的观点不同,回击过程中,通道保持高温的时间远远大于峰值放电电流存在的时间,在回击电流缓慢减小的数百微秒内,核心电流通道维持20000K以上高温,这一特性是热效应导致雷电灾害的主要根源.  相似文献   

10.
利用以高速摄像机为记录系统组装的无狭缝摄谱仪,在青海地区获得了多次云对地闪电首次回击过程400-900 nm波长范围的时间分辨光谱,分别计算了闪电电流核心通道和外围发光通道的温度;结合空气等离子体的传输理论,获得了闪电通道的电导率,探讨了回击过程中通道温度及电导率的演化特征.结果表明,闪电电流核心通道的温度比外围通道高约5000-7000 K,并且,与以往关于通道峰值温度持续时间的观点不同,回击过程中,通道保持高温的时间远远大于峰值放电电流存在的时间,在回击电流缓慢减小的数百微秒内,核心电流通道维持20000 K以上高温,这一特性是热效应导致雷电灾害的主要根源.  相似文献   

11.
用无狭缝光谱仪获得了广东地区一次人工触发闪电首次回击过程的发射光谱,同时测量了回击电流峰值为18.3kA,回击持续时间为4.5ms。发现导线部分通道的发射谱线中存在407.5,419.0,425.3和517.9nm等激发能比较高的谱线,具有强闪电通道发射光谱的谱线结构,空气部分则具有弱闪电通道的谱线结构;导线部分与空气部分的基本谱线的相对强度差别较小,强闪电特征谱线相对强度相差非常大。通过对导线部分与空气部分谱线激发能等参数的分析,发现回击开始时,导线部分先导通道还未完全消失,回击脉冲电流对先导闪电通道等离子体进行了进一步激发,增加了等离子体的温度和密度,使得导线部分具有较高激发能的谱线被完全激发,相对于空气部分407.5,419.0,425.3和517.9nm等谱线的强度有较大程度的增加,造成导线部分通道与空气通道两种不同的光谱结构。通过光谱分析,获得了闪电通道不同部分的温度、电子密度等参数,发现导线部分通道的辐射特性不同于空气通道是导线部分通道发光亮度与电流相关性较差的原因。  相似文献   

12.
用光学多道分析仪(OMA)获得了山东地区人工触发闪电回击过程的发射光谱.与以往的自然闪电光谱相比,除了氮、氧的中性原子及一次电离的离子谱和Hα谱线外,这次人工触发闪电的光谱还记录到了微量元素ArⅠ 602.5 nm及ArⅡ 666.5 nm的谱线.在局部热力学平衡近似下,根据光谱线的相对强度等参量,计算了闪电通道等离子体的温度;利用Hα线的Stark加宽、通过半经验方法获得了闪电通道的电子密度;首次结合等离子体理论得到了闪电通道的电导率,并由此讨论了通道的导电特性,分析了通道电导率与回击电流之间的相关性,为进一步计算回击电流提供了参考数据.结果分析得出:闪电通道是良导体,电子是通道电流的主要载体;一般情况下,人工触发闪电的通道亮度比自然闪电通道大,而通道回击电流小于自然闪电.  相似文献   

13.
利用波长为1 064 nm,最大能量为500 mJ的Nd∶YAG脉冲激光器在室温,一个标准大气压下对Mg合金冲击,改变激光能量,得到相应的Mg等离子体特征谱线。分析谱线,发现谱线有不同的演化速率,同时得到了MgⅠ,MgⅡ离子谱线,证明此实验条件下,激光能量足够Mg合金靶材充分电离。选择了相对强度较大的MgⅠ 383.2 nm, MgⅠ 470.3 nm, MgⅠ 518.4 nm三条激发谱线,利用这些发射谱线的相对强度计算了等离子体的电子温度,激光能量为500 mJ时,等离子体温度为1.63×104 K。实验结果表明:在本实验条件下,Mg原子可以得到充分激发;在200~500 mJ激光能量范围内,等离子体温度随着激光能量的降低而衰减,在350~500 mJ激光能量范围内的等离子体温度随激光能量的变化速度十分明显,200~350 mJ时等离子体温度变化速度迅速减缓;激光能量为300 mJ时,谱线相对强度明显减弱,低于350和250 mJ的谱线相对强度,不符合谱线相对强度会随着激光能量提高而上升的变化趋势,证明发生了等离子体屏蔽现象,高功率激光产生的等离子体隔断了激光与材料之间的耦合。此时的等离子体温度明显升高,不符合变化趋势,这是由于在发生等离子体屏蔽现象时,激光能量被等离子体吸收,导致等离子体温度上升。  相似文献   

14.
利用无狭缝光谱仪获得了一次空中触发闪电过程中400~660 nm的发射光谱,对空中触发闪电小回击和上行正先导通道的发射光谱进行了分析,讨论了人工触发闪电导线通道与空气通道光谱的差异,发现导线段通道光谱持续了约140 ms,而空气段通道仅持续了0.167 ms;结合Fe,N,O等元素的电离能、激发能,给出了导线通道亮度强、持续时间长的原因。在电流强度相同的情况下,人工触发闪电通道的导线段有更多的粒子被激发,能产生更多的光谱辐射,导线段通道的亮度远强于空气段,导线段通道的光谱强度也远强于空气段;在随后的等离子体通道消散阶段导线段闪电通道的复合反应持续时间也更长。通过对小回击以及上行正先导导线通道上部、下部空气段光谱结构以及通道温度等参数与广东地区自然闪电特征谱线及温度等参数的比较,发现小回击通道光谱主要由NⅡ离子低激发态之间的跃迁组成,具有NⅡ 444.7 nm,NⅡ 517.9 nm,NⅡ 616.8 nm等广东地区一般强度自然闪电的特征谱线。上行正先导下部空气段通道具有高激发能的谱线开始消失,出现了Hα,Hβ,OⅠ 615.8 nm等激发能较低的谱线,具有闪电回击后期的光谱结构。小回击通道以及上行正先导通道下部空气段温度分别为21 000和20 000 K,通道温度低于自然闪电温度。  相似文献   

15.
采用了一种针对针的放电结构,将其放置在一个高纯氩气的密闭腔室中,通过施加正极性的过电压产生可重复的大气压纳秒脉冲放电,并提出建立大气压放电的连续辐射模型来诊断氩气纳秒脉冲放电中的电子温度.实验利用电压和电流探头分别获取放电过程中的电压和电流波形图,其放电脉宽约为20 ns.通过消色差透镜、单色仪和ICCD等光学系统的组...  相似文献   

16.
大气感耦射流等离子体加工作为新型超光滑表面加工技术,其高密度等离子体激发能力为充分激发反应气体,提高材料去除率提供了有力条件。利用发射光谱仪,对加工过程中大气感耦射流等离子体激发的400~1 000 nm范围内的光谱进行了测量。并利用峰值明显,能级差较大的谱线计算电子温度。由于测量的谱线强度是等离子体发射系数沿弧长方向的积分值,且感耦射流等离子体具有回转对称性,因此可利用阿贝尔变换求取光谱发射系数,进而通过玻尔兹曼图谱法计算电子温度。计算结果表明由于趋肤效应和旋流进气的双重作用,处于加工区域的温度分布呈现出双峰形;随着距离增大,双峰效应逐渐减弱,温度分布趋于平滑。研究也表明随着加工距离的增大,等离子体边缘逐渐偏离局部热力学平衡状态,玻尔兹曼图谱法计算电子温度的适用性降低,导致等离子体边缘的温度拟合优度值逐渐降低。进一步对通入反应气体CF4后的等离子体光谱进行了研究,通入反应气体后的等离子体呈现鲜亮的蓝绿色,是由于激发反应气体后产生的位于400~650 nm范围的带状光谱所致,分析表明谱图中的带状光谱为双原子分子C2谱带Swan Bands,而该双原子分子是感耦氩等离子体对碳源CF4的充分激发产生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号