首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
微分算法的艾比湖湿地自然保护区土壤有机质多光谱建模   总被引:2,自引:0,他引:2  
针对以往利用高光谱数据来来反演土壤有机质(SOM)的可行性与可靠性,结合微分处理对光谱数据信息提取的高效性,提出了直接对多光谱遥感影像进行微分处理就可得出SOM建模研究,旨在为今后SOM速测提供参考。采用Landsat 8_OLI 多光谱遥感影像数据,对多光谱遥感影像进行辐射定标、几何校正、大气校正、镶嵌和裁剪,运用IDL软件对影像进行一阶微分处理和二阶微分处理,发现一阶微分图像能够更好地表达地物的真实情况,更好地区别水体与土壤。原始遥感影像包含大量的信息其中还包括噪声,通过微分处理后的遥感影像剔出了原始影像中反射率值突兀变化的部分。在研究区采用五点法采集土壤样品。室内实验用重铬酸钾氧化-容量法测得SOM数据。多光谱数据结合地面实测SOM数据,分析SOM与多光谱数据反射率的关系,发现一阶微分处理后的遥感数据与SOM含量的相关性存在敏感波段,说明一阶微分处理可以将原始遥感图像数据在多光谱范围内的一些隐含的土壤有机质信息释放出来。选取相关性高的数据建立基于原始遥感数据、一阶微分数据、二阶微分数据的单波段多光谱线性模型和多波段多光谱线性模型,选取最优模型来估算和反演土壤有机质含量。结论如下:(1)通过对原始影像进行微分处理发现,微分处理后的影像变化明显,一阶微分处理的影像噪声降低,更加突出了影像中土壤有机质隐藏的信息。二阶微分处理的影像抑制了土壤有机质信息。(2)原始遥感影像各波段数据对土壤有机质含量的相关性较低,一阶微分处理后的遥感影像数据反映出土壤有机质敏感波段即部分波段数据相关性明显高于原始数据,二阶微分处理后的遥感影像各波段数据对土壤有机质含量的相关性较弱。(3)多波段建模效果要优于单波段建模;一阶微分多波段模型预测精度最优,其模型的决定系数和模型拟合的决定系数分别为0.898和0.854,该模型对估算研究区内的SOM含量效果较好;综合比较了单波段模型和多波段模型的拟合精度,发现无论在单波段模型还是多波段模型一阶微分处理后的模型都具有更好的预测能力。(4)基于一阶微分多波段模型对研究区SOM进行反演,反演结果与实际情况相符合,对干旱区SOM含量制图提供了切实可行的方法和参考。  相似文献   

2.
光谱测定黑河上游土壤有机质的预测模型   总被引:1,自引:0,他引:1  
地面高光谱遥感光谱分辨率高,能详细地反映地物波谱特征;多光谱遥感时域宽,覆盖范围广,对较大时空区域的地物特征反演具有更大的优势。探求以不同反射率指标的土壤有机质含量预测模型,及其敏感波段,可以结合两种光谱数据的优点,为研究土壤有机质含量的时空变化规律提供新途径。本研究选取黑河上游223个土壤样品测定其有机质含量和高光谱曲线,应用原始光谱曲线反射率(λ)、倒数(REC)、倒数之对数(LR)、归一化(CR)和一阶微分(FRD)五种指标,采用逐步线性回归分析方法建立预测模型。通过统计检验,结果表明,以反射率指标为自变量的模型预测效果最佳,其相关系数(r)和均方根误差(RMSE)分别为:0.863和4.79。最优模型中得出的敏感波段有TM1内的474 nm、TM3内的636 nm和TM5内的1 632 nm。研究结果可为使用TM遥感数据反演黑河上游土壤有机质含量提供参考。  相似文献   

3.
土壤有机质含量的高光谱估测可快速、准确监测土壤肥力,对现代化农业生产进行精准施肥提供科学依据。以新疆渭干河-库车河三角洲绿洲耕层土壤为研究对象,对采集的98个土壤样品的原始光谱反射率R分别进行传统倒数对数lg(1/R)、一阶微分R′和倒数对数一阶微分[lg(1/R)]′数学变换,以及基于小波母函数Bior1.3不同尺度分解的连续小波变换(CWT),并与实测土壤有机质含量进行相关分析,从而筛选出各类变换下与土壤有机质含量密切相关的特征波段和小波系数(p<0.01)。分别以原始光谱反射率(R)以及不同变换处理下的特征波段反射率和敏感小波系数作为自变量,土壤有机质含量作为因变量,采用偏最小二乘回归和支持向量机回归方法构建土壤有机质含量的估测模型。结果表明:(1)各类光谱变换方法有效提升光谱与土壤有机质含量之间的敏感性,其中经CWT变换后的土壤光谱反射率与有机质含量的相关性得到显著提高,相关系数由0.39提高到0.54(p<0.01)。(2)传统的[lg(1/R)]′变换构建的支持向量机回归模型,其决定系数(R2)高于lg(1/R)R′变换构建的模型,说明倒数对数一阶微分变换可有助于提高估测模型的精度,且支持向量机回归模型的精度和稳定性高于偏最小二乘回归模型。(3)经过CWT分解后,以原始光谱反射率在不同尺度上的敏感小波系数作为自变量建立的模型,估测精度和稳定性均有明显的提高,构建的R-CWT-23-SVMR模型的决定系数(R2)为0.84,均方根误差(RMSE)为1.48,相对分析误差(RPD)等于2.11,模型精度达到最高并拥有极好的预测能力。高光谱数据经多种变换处理后可有效去除白噪声,而连续小波变换处理比传统的数学变换方法更适合于挖掘土壤有效信息,实现光谱信号的近似特征和细节特征的有效分离,建立的反演模型可更加精准估测土壤有机质含量。  相似文献   

4.
顾及土壤湿度的土壤有机质高光谱预测模型传递研究   总被引:4,自引:0,他引:4  
高光谱遥感技术作为当前遥感发展的前沿科技,通过电磁波与地物的相互作用,可以定量反演地物的物理化学性质。土壤有机质是重要的土壤养分信息参数,利用高光谱遥感技术快速获取其含量信息可以为精准农业的发展提供必要的数据支撑。然而,由于受到外部参数差异的干扰,导致建模精度降低的同时,还会造成已有模型传递性的“失效”。为了消除湿度差异的干扰,进一步拓展已有模型的适用空间,以江汉平原滨湖地区为例,通过对95个土壤样本进行加湿处理,在实验室自然风干的条件下,量测得到13套不同湿度等级土壤样本的可见—近红外反射光谱数据,建立了各湿度等级下土壤有机质的光谱反演模型,研究水分差异对建模精度的影响;在此基础上,运用Direct Standardization(DS)算法对湿土光谱进行校正,进而探讨该算法在提高模型传递性能方面的潜力。结果表明:基于风干土光谱建立的模型预测精度最高,未经校正的湿土光谱无法通过该模型进行土壤有机质含量预测,预测偏差在-8.34~3.32 g·kg-1,RPD在0.64~2.04;经过DS算法校正后的湿土光谱可以通过该模型进行土壤有机质含量预测,预测偏差降低至0,RPD值提高至7.01。研究表明DS算法能有效降低湿度差异对光谱反演土壤有机质的影响,使土壤有机质光谱反演模型适用于不同水分含量的土壤样本。  相似文献   

5.
土壤氧化铁的高光谱响应研究   总被引:3,自引:0,他引:3  
通过分析野外采集的13个土种的不同氧化铁含量原始土样和人工配制不同氧化铁含量土样的高光谱特征,研究了氧化铁对土壤反射率、土壤线参数、土壤有机质高光谱特征、土壤反射率光谱曲线形态的影响。研究结果表明,随氧化铁含量的增加,350~570 nm波段反射率降低,570~2 500 nm波段的反射率增加,氧化铁去除量与反射率变化量之间的相关性不明显;氧化铁含量与土壤线斜率呈线性负相关,与截距呈线性正相关,且均达到极显著相关水平,表明利用土壤线参数反演氧化铁含量具有可行性;在622~851 nm波段,氧化铁对有机质的高光谱特征具有明显的抑制作用;通过去包络线和统计F值与光谱角值表明,氧化铁对土壤反射光谱曲线形态有影响。  相似文献   

6.
连续小波变换高光谱数据的土壤有机质含量反演模型构建   总被引:9,自引:0,他引:9  
土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方法建立适用于不同地域和不同土壤类型的有机质含量的反演模型。该研究在实验室内利用ASD FS3采集了土壤高光谱数据,采用“重铬酸钾-外加热法”测得了土壤有机质含量;分析了土壤原始光谱反射率(R)与有机质含量的相关性,选取R2>0.15的敏感波段的反射率;利用CWT对土壤原始光谱反射率(R)、光谱反射率的连续统去除(CR)进行不同尺度的分解,分析小波系数与土壤有机质含量的相关性,选取R2>0.3的敏感波段的小波系数;利用R选取的波段信息和R-CWT,CR-CWT的选取的小波系数,分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机回归(SVMR)三种不同的土壤有机质含量反演模型。结果表明:相比R与土壤有机质含量的决定系数R2,R-CWT,CR-CWT变换后得到的小波系数与土壤有机质含量的决定系数R2分别提高了0.15和0.2左右;CR-CWT-SVMR的模型效果最为显著,预测集的R2和RMSE分别为0.83,4.02,RPD值为2.48,具有较高的估测精度,能够全面稳定地估算土壤有机质含量;CR-CWT-PLSR的模型精度与CR-CWT-BPNN,CR-CWT-SVMR相比虽有一定差距,但是其计算量要明显小于非线性的BPNN和SVMR方法,具有模型简单、运算速度快等特点,对开发与设计田间传感器具有较大的应用价值。  相似文献   

7.
光谱分辨率对黑土有机质预测模型的影响   总被引:8,自引:0,他引:8  
高光谱遥感以其高光谱分辨率适于反射光谱特征复杂的地物识别与参数反演,但对于反射光谱特征平滑的地物,高光谱数据可能存在数据冗余问题。本研究对实验室测定的黑土高光谱反射率进行重采样,基于统计分析方法研究了光谱分辨率对黑土有机质预测模型精度的影响,结果表明:黑土有机质含量高,土壤有机质的光谱作用范围宽(445~1 380nm);黑土有机质光谱预测模型精度随光谱分辨率降低,呈现先增后减的趋势,最优模型的光谱分辨率为50nm,低于高光谱遥感波段设置,略高于多光谱传感器波段设置;黑土有机质光谱预测最优模型以倒数对数微分为自变量,模型决定系数R2=0.799,RMSE=0.439,研究成果为土壤有机质遥感反演、光谱速测仪器的研制,以及传感器波段设置提供理论基础与技术支持。  相似文献   

8.
为了分析与对比线性光谱混合分析模型(LSMA)和约束线性光谱混合分析模型(CLSMA)在光谱混合分解中的优势与劣势,我们设计了混合光谱分解实验。反演结果表明,当利用所有光谱数据进行端元百分含量反演时,LSMA的总误差比CLSMA小0.075。当利用波段选择后的数据进行端元百分含量反演时,前者的总误差比后者小0.017。这样,不论是利用所有光谱波段数据还是利用波段选择后的数据,LSMA在混合光谱分解的效果上都优于CLSMA;此外,LSMA利用波段选择数据反演端元百分含量的总误差比它利用所有波段数据的总误差小0.02,CLSMA利用波段选择数据反演端元百分含量的总误差比它用所有波段数据的总误差小0.077。这主要是因为波段选择大大减少了端元光谱间的相关性,所以,利用波段选择数据进行混合光谱分解优于不加选择的光谱混合分解。  相似文献   

9.
连续小波变换定量反演土壤有机质含量   总被引:3,自引:0,他引:3  
以北京市东部地区96个潮土土样的土壤参数及对应光谱数据为数据源,采用连续小波多尺度分析处理与分析。首先将土壤光谱进行初步处理,生成小波系数,其次将土样的有机质含量与小波分解系数开展相关性分析,提取特征波段,最后采用特征波段建立预测耕层有机质含量的模型。结果表明:经连续小波处理后,光谱对耕层有机质含量的预测能力明显优于传统光谱变换技术;经连续小波分解后,对土壤有机质含量的预测能力随光谱分辨率降低呈先降后升再降的趋势;连续小波分析算法可提升土壤光谱对有机质含量的估测能力,与土壤高光谱反射率相比,基于连续小波变换的土壤有机含量最佳的精度提高19%;由于光谱分辨率为80 nm建立的模型精度较高,其R2达到0.632,这表明在连续小波算法下,光谱分辨率较低的宽波段数据可用于土壤有机质含量的监测。  相似文献   

10.
土壤有机质是土壤肥力的物质基础,其含量的高低是评价土壤肥力的重要标志。土壤有机质组分根据其溶解性可分为胡敏素(HM)、胡敏酸(HA)、富里酸(FA),不同组分的肥力特性差异显著,因此,土壤有机质组分数据可更加全面、客观的反映土壤肥力状况。传统土壤土壤有机质及组分的测定工序繁杂,效率低下且时效性差,大量研究表明高光谱技术能有效提高土壤属性的检测效率并降低测试成本,但关于可见光-近红外、中红外光谱检测土壤有机质组分的报道鲜见。为了探索中红外光谱及可见光-近红外-中红外组合光谱对土壤有机质组分检测的可行性,并对比有机质单一光谱模型与有机质不同组分的组合光谱模型的预测精度,以南疆地区农田土壤为例,在阿克苏及和田地区共采集93个土样,进行有机质、胡敏素、胡敏酸、富里酸含量及光谱数据的测定。其次,利用可见-近红外(VNIR)、中红外(MIR)及其组合光谱(VNIR-MIR)三种光谱数据集,采用偏最小二乘(PLSR)、支持向量机(SVM)、随机森林(RF)三种建模方式对土壤有机质、胡敏素、胡敏酸、富里酸含量进行组合模型分析预测。结果表明:(1)土壤有机质及各组分均与光谱反射率有较好的相关性,土壤有机质及组分在MIR谱段的特征波段数量明显多于VNIR谱段。(2)有机质最优预测模型的模式为VNIR-MIR-RF,该模型的决定系数R2为0.90;胡敏素与胡敏酸最优预测模型的模式均为VNIR-RF模型,R2均为0.92;富里酸最优预测模型的模式为MIR-RF模型,R2为0.94。(3) 基于胡敏素、胡敏酸和富里酸的有机质组合光谱模型的预测精度明显高于有机质单一光谱模型,两种模型的R2分别为0.93和0.90。实现了土壤有机质组分的高效快速反演,且基于有机质组分的组合模型提高了土壤有机质预测精度,为南疆地区大尺度土壤肥力的鉴定与精准施肥提供重要的参考价值。  相似文献   

11.
东北黑土的光谱特性及其与土壤参数的相关性分析   总被引:6,自引:3,他引:6  
选取我国东北黑土作为研究对象,研究其光谱特性并分析黑土主要参数与近红外光谱的相关性。通过比较东北黑土和北方潮土光谱特征的差异,显示当水分含量较高时,两种土壤的光谱特性差别不是很明显,当水分含量较低时,受土壤质地的影响,两种土壤的吸光度光谱及微分光谱均有很大差异。土壤水分值和吸收光谱有很大相关系数,土壤全氮与光谱呈现出了一定的相关性,提高土样全氮含量的方差,可以获得高的相关系数;由于黑土中有机质的含量很高,使基于土壤有机质的光谱吸收达到饱和,二者之间呈现较低的相关性。  相似文献   

12.
基于无人机多光谱图像的土壤水分检测方法研究   总被引:1,自引:0,他引:1  
以表层土壤为对象,探究土壤的多光谱反射率与土壤水分含量相关性,进行基于无人机多光谱图像的土壤水分含量预测模型方法的探究。选取中国农业大学通州实验站为研究区域,实地采集试验田的土壤样本100组,按照一定梯度配制土壤含水量,配成的土壤含水率为10%~50%之间,土壤含量的真实值采用土壤烘干法进行测定。多光谱相机灵巧便捷,可搭载在无人机上对土壤进行监测。将RedEdged-M型多光谱相机搭载在Phantom 3型无人机上,选择阳光充足的采集环境,实时采集土壤样本的多光谱图像,建立土壤多光谱信息与水分含量之间的模型。利用处理光谱数据的ENVI5.3软件提取土壤样本多光谱信息,以多光谱相机自带的标准白板反射率为100%,计算出土壤样本在蓝、绿、红、红边、近红外五个波段的光谱反射率。采用BP神经网络算法、支持向量机算法、偏最小二乘算法分别建立基于无人机多光谱图像的土壤水分含量的预测模型。以80组土壤样本数据作为训练集,建立基于多光谱图像的土壤水分含量预测模型。采用莱文贝格-马夸特算法对BPNN进行改进,提高了其训练速度,当网络结构为5-10-1时,训练效果最好,本文选择该网络结构;SVM采取高斯核函数,当参数为0.56时,模型效果最好。本研究采用归一化均方根误差(NRMSE)和决策系数(R 2)对三种土壤水分含量的预测模型进行定量对比。以20组土壤样本数据作为测试集,结果可知,基于BP神经网络土壤水分含量预测模型的NRMSE为0.268,R 2为0.872;基于支持向量机的土壤水分含量预测模型的NRMSE为0.298,R 2为0.821;基于偏最小二乘土壤水分含量预测模型的NRMSE为0.316,R 2为0.789。对三种模型分析可知,基于BPNN的土壤水分含量预测模型效果均较好。结果可知,土壤的光谱反射率与含水率间存在较密切的相关性,将多光谱相机搭载在无人机上可以对土壤水分含量进行有效的实时监测,对监测土壤墒情提供技术支持和理论支撑。  相似文献   

13.
为了实现油菜叶片中叶绿素含量的快速无损检测,开发了手持式多光谱成像系统用于采集油菜叶片在460,520,660,740,840和940 nm 六个波段的光谱图像。将一台能够采集可见光/近红外(380~1 023 nm)512个波段光谱图像但是价格高昂且体积大的室内高光谱成像系统作为参考仪器,将手持式多光谱成像系统作为目标仪器后,采用伪逆法(pseudo-inverse method)求得高光谱成像系统和多光谱成像系统两台仪器之间的转换矩阵F,从而实现6个波段的多光谱图像向512个波段的高光谱图像的重构,提高了手持式设备的光谱分辨率。运用偏最小二乘回归算法(PLSR)建立了重构的光谱与油菜叶片的叶绿素含量之间的关系模型。结果表明,重构的可见光范围内的光谱反射率与叶绿素浓度之间具有很强的相关性,PLSR回归模型建模集的决定系数R2c为0.82,建模集均方根误差RMESC为1.98,预测集的决定系数R2p为0.78,预测集均方根误差RMESP为1.50,RPD为2.14。虽然应用本文开发的手持式成像系统结合PLSR模型实现油菜叶绿素含量快速无损预测的精度低于基于室内高光谱成像系统获得的高光谱图像建立的PLSR模型(R2c,RMESC,R2p,RMESP和RPD分别为0.90,1.41,0.82,1.36和2.37),但是明显优于基于原始多光谱成像系统4个波段(460,520,660和740 nm)反射率建立的PLSR模型得到的结果(R2c,RMESC,R2p,RMESP和RPD分别为0.78,2.06,0.72,1.85和1.88)。表明光谱重构技术可提高多光谱成像预测油菜叶绿素含量的精度,并且与室内高光谱成像系统相比,开发的手持式设备具有体积小、成本低廉和操作简便等优点,可为田间油菜叶片的生理状态和养分检测及可视化表达提供技术支持。  相似文献   

14.
不同粒径对土壤有机质含量可见—近红外光谱预测的影响   总被引:1,自引:0,他引:1  
土壤有机质(SOM)是表征土壤肥力的重要指标,实现其快速准确检测可为精准农业区域管理提供有效的数据支撑。土壤粒径对SOM 的光谱预测及仪器开发有很大的影响,为了明确不同粒径对 SOM 预测的影响,分别制备了1~2,0.5~1,0.25~0.5,0.1~0.25和<0.1mm 五种均匀粒径及<1mm 混合粒径共计6种粒径土样并进行了可见-近红外(300~2 500nm)光谱数据采集。采用蒙特卡罗交叉验证分别剔除了不同粒径的异常样本,结合Savitzky-Golay卷积平滑法对光谱数据进行平滑去噪处理,比较了不同粒径样品的光谱反射率差异,并对平滑后的原始光谱 R进行倒数IR、对数 LR、一阶导数 FDR等3种光谱变换并分析与SOM 含量的相关性,基于竞争性自适应重加权算法(CARS)对光谱数据进行了特征波长提取,并结合偏最小二乘回归(PLSR)分别建立了相应的SOM 含量预测模型。结果表明,不同粒径土样的平均光谱反射率与变异系数随着粒径的减小逐渐增加,且在大于540nm 波长范围内,差异明显。随着粒径的减小,SOM含量与光谱反射率在全波段范围的相关性变化幅度愈加明显,FDR 变...  相似文献   

15.
高光谱技术联合归一化光谱指数估算土壤有机质含量   总被引:4,自引:0,他引:4  
随着近地高光谱遥感技术的发展,为快速、有效、非破坏性地获取土壤有机质(SOM)信息提供了可能。土壤高光谱波段数据众多,光谱数据变量之间存在较为严重的多重共线性,影响模型复杂结构,而构建归一化光谱指数(NDSI)可以有效去除冗余信息变量,放大光谱特征信息。以江汉平原公安县为研究区,采集56份耕层土样,在室内获取土壤光谱数据,采用“重铬酸钾-外加热法”测定SOM含量,对实测土壤光谱数据(Raw)进行倒数之对数(LR)、一阶微分(FDR)和连续统去除(CR)三种变换,计算四种变换的NDSI数值,分析SOM与NDSI的二维相关性,并对一维、二维相关系数进行全波段范围内的p=0.001水平上显著性检验,提取敏感波段和敏感光谱指数,结合偏最小二乘回归(PLSR)建立SOM的估算模型,探讨二维光谱指数用于建模的可行性。研究表明,二维相关系数相比一维相关系数有不同程度的提升,以LR最为显著,相关系数数值提升约0.26;基于二维相关性分析提取的敏感光谱指数的PLSR建模效果整体优于一维相关性分析提取的敏感波段,其中,NDSILR-PLSR模型的稳健性最优,验证集R2为0.82,模型验证RPD值为2.46,模型稳定可靠,可以满足SOM的精确监测需要,适合推广到区域范围内低分辨率的航空航天遥感(如ASTER,Landsat TM等),应用潜力较大。  相似文献   

16.
多光谱影像的陕西大西沟矿区土壤重金属含量反演   总被引:1,自引:0,他引:1  
传统的以“点采样+实验室分析”为主的土壤重金属含量分析技术成本高、效率低下,而基于多光谱遥感的土壤重金属高精度定量反演中存在重金属含量影响因子的优化这一难题,以陕西大西沟矿区这类山区地形条件下的金属矿区为例,利用Landsat8/OLI多光谱卫星影像、DEM数据以及外业土壤采样分析数据,开展了矿区土壤重金属含量指示因子分析及定量反演研究。首先,考虑研究区地形地貌特点,设计了沿研究区地形特征线及其两侧坡面均匀分布的样点分布方案,采集了45个样本。并对45个样本的混合样中的8种重金属含量进行了兴趣度分析,根据含量超标程度及矿的类型选取了铜、铅、砷3种元素作为分析对象。其次,根据研究区土地利用现状及地形特点,提出了以Landsat8/OLI影像B2至B7波段光谱反射率、粘土矿物比(CMR)、改进归一化水体指数(MNDWI)、差异植被指数(DVI)等八种光谱指数、以及反映研究区地形坡度和坡向三类因子作为反映土壤重金属含量空间分布特征的侯选因子。进而,对上述三类侯选因子与样本中3种金属含量进行了最小二乘相关性分析。根据分析结果,引入了基于估算误差最小准则的金属含量估算模型--基于规则的M5模型树的分段线性估算模型。以上述三大类共17个指示因子作为模型的输入,利用80%的土壤样本分析数据作为模型的训练数据,经过M5模型树的构建、平滑和树枝修剪过程,建立了3种金属的反演模型实现了研究区中土壤中3种金属含量的估算。同时,基于均方根误差(RMSE)最小准则确定了以光谱因子为主的最利于反演的最佳指示因子集。最后,用随机选取的20%的检验样本对模型进行了反演精度分析,验证了该模型对铜、铅、砷3种金属含量的反演精度比普通的线性模型分别提高了27.3%,24.6%,20.9%,同时,铜、铅元素的可信度也有所提高。利用上述模型的反演结果实现了3种金属含量的空间分布制图,并将反演结果与1990年公布的国家土壤元素背景值进行了对比。此外,分析了研究区铜、铅、砷3种金属的空间分布规律,并利用野外调查结果进行了验证。  相似文献   

17.
不同质量含水量的土壤反射率光谱模拟模型   总被引:1,自引:0,他引:1  
土壤含水量的时空分布与变化情况对土壤温度变化、陆地—大气间热量平衡以及陆面大气环流产生显著的影响,因此,对大范围内土壤含水量进行实时动态监测,获得某段时间内土壤含水量的连续变化情况具有重要的意义。研究目的是借助高光谱遥感手段,通过构建不同质量含水量的土壤反射率光谱模拟模型,深入了解土壤质量含水量与土壤反射率光谱之间的关系,为监测土壤含水量提供有效手段。利用ASD Field Spectral FR野外光谱仪和加水称重法获得北京市8个采样点的土壤样品不同质量含水量下的土壤反射率光谱实测数据,利用其中2个土壤样品不同质量含水量下的光谱数据构建含水土壤反射率光谱模拟模型,并利用未参与建模的另外6个土壤样品数据对该模型的模拟效果进行了检验。通过数据验证发现,当土壤质量含水量小于田间持水量时,该模型的模拟精度较高;而且对于不同的土壤样品,模型的模拟效果都比较好。最后又利用北京大学校园内三个采样点的实地测量光谱数据对模型进行了验证,光谱的模拟值与实测值之间的均方根误差最小可达0.005 8。因此该模型可实现对质量含水量小于田间持水量的不同类型土壤的反射率光谱进行较高精度的模拟。  相似文献   

18.
矿产资源开采中产生的废渣废液长期堆存后产生的渗滤液向土壤中扩散易造成周围土壤的重金属污染,影响作物生长;人类通过食物链食用含重金属元素的果实后,会引起神经系统的神经衰弱、手足麻木,消化系统的消化不良,血液中毒和肾损伤等症状;这种对生态环境和人身安全的污染和损害是十分严重的。因此如何快速有效摸清矿区周围农作物土壤污染情况尤为重要。多光谱遥感由于具备光谱分辨率高、实时无损、大面积监测等优势,在突破植被屏障监测土壤重金属上具有巨大的潜力。以平谷区主要的农作物桃树为研究对象,利用桃叶的高光谱数据、土壤采样数据,分析桃叶光谱曲线的响应特性,对桃叶反射光谱进行一阶/二阶微分、标准正态、连续去统等四种变换,结合相关分析及多元线性回归模型确定光谱特征变量,构建植被指数HMSVI;结果表明HMSVI与土壤中Cd, AS和Pb含量的相关性较常用植被指数高。运用线型回归方法进行元素含量与植被指数HMSVI建模后,选取拟合较好的模型,实现了叶片高光谱与土壤重金属含量的统计建模,最后利用Sentinel-2遥感影像反演三种重金属含量空间分布,并对结果进行精度验证。结果表明:受重金属胁迫叶片的平均光谱反射率高于正...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号