首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
《光散射学报》2017,(3):216-221
采用化学还原法制备了花状纳米银凝胶溶胶,沉积在硅片、二氧化钛薄膜、玻璃上,制备得到了AgNP@Si,AgNP@TiO_2,AgNP@G 3种表面增强拉曼基底。以罗丹明6G(R6G)为探针分子,考察了3种基底的表面增强拉曼效果,重复性及均匀性。AgNP@TiO_2和AgNP@Si的检出限为10~(-8) mol·L~(-1),而AgNP@G的检出限为10~(-7) mol·L~(-1),AgNP@Si的重复性和均匀性最优。结果表明,AgNP@Si的SERS增强效果最佳,并具有制备简单,重复性和均匀性好等优点。  相似文献   

2.
加入增敏剂AgNO3和NaCl,在银纳米棒(AgNRs)表面吸附了较牢固的AgCl并形成高SERS活性的AgNR/AgCl溶胶基底,维多利亚蓝B(VBB)分子探针在1 611 cm-1处有一较强的SERS峰。用VBB做大肠杆菌(EC)的染色剂,使染色的大肠杆菌具备VBB分子探针的SERS特性,即VBB染色大肠杆菌也在1 611 cm-1处有一较强的SERS峰。在最优条件下,该SERS峰强与大肠杆菌浓度在5×106~3×109 cfu·mL-1 范围内成正比,检出限为2×106 cfu·mL-1,用于水样和饮料中大肠杆菌的分析,具有简便、快速、灵敏等优点。  相似文献   

3.
酸性橙Ⅱ作为一种偶氮类化工染料,具有致癌致畸性,因此,禁止添加于食品中。但由于酸性橙Ⅱ色泽鲜艳、着色力强、价格低廉,不法商家出于利益考虑非法添加于食品中用于着色,严重威胁到食品安全和消费者健康。酸性橙Ⅱ传统检测方法主要是利用仪器分析技术进行分析,但存在前处理复杂、耗时费力等缺点,不能满足快速检测识别的目的。表面增强拉曼光谱(SERS)技术作为一种快速、灵敏的新兴指纹光谱分析技术,在食品安全检测领域的应用受到广泛关注,因此,本文采用SERS光谱结合不同纳米材料增强基底,探索酸性橙Ⅱ的快速检测方法。首先实验室自制了金纳米颗粒溶胶,金纳米棒溶胶基底,并对其结构性能进行了表征,纳米溶胶基底尺度均匀、分散性良好。基于金纳米颗粒溶胶对两种拉曼激发光源(波长为633和780 nm)对酸性橙Ⅱ分析的影响进行了研究,结果表明基于633 nm激发光源酸性橙Ⅱ的SERS响应信号更强。在此基础上,对比了Klarite~(TM)商业化固体基底、实验室自制金纳米颗粒溶胶和金纳米棒溶胶基底的增强性能,不同粒径金纳米颗粒溶胶对酸性橙Ⅱ的SERS分析有明显差异,粒径为(18.0±2.0) nm金纳米溶胶展现出较好的增强性能。利用增强性能差异不大的三种纳米材料基底(Klarite~(TM)固体基底,粒径为(18.0±2.0) nm的金纳米颗粒基底,横纵比为1.8的金纳米棒基底)对系列浓度的酸性橙Ⅱ进行了SERS检测,结果表明SERS结合三种基底对酸性橙Ⅱ的最低检出浓度分别为0.2, 0.1和0.1 mg·L~(-1)。SERS强度随着酸性橙Ⅱ浓度的增加而增强,因此探索建立了酸性橙Ⅱ的定量分析模型。研究选取1 184, 1 385和1 597 cm~(-1)三个特征主峰,确定其不同浓度酸性橙Ⅱ所对应的特征峰强度,建立酸性橙Ⅱ标准溶液浓度与单个SERS特征峰强度之间的线性回归模型,决定系数R~2的范围为0.861~0.938,RMSE为0.88~1.15 mg·L~(-1), RPD为2.5~4.0,其中, 1 597 cm~(-1)特征峰强度与浓度之间的线性回归模型最佳(R~2=0.933, RMSE=0.88 mg·L~(-1), RPD=4.0),具有良好的线性相关性。研究表明采用SERS光谱技术可对酸性橙Ⅱ进行定性定量分析,可作为一种简单、快速、高灵敏的检测方法用于色素类污染物检测。  相似文献   

4.
以表面增强拉曼光谱(SERS)方法对2-巯基苯并咪唑(2-MBI)进行了研究,以自组装在玻璃基片上的银纳米膜作为SERS增强基底,采集了2-MBI的SERS光谱图,并对其拉曼特征峰进行了指认。研究了吸附时间和分子浓度对拉曼光谱的影响,以411cm~(-1)拉曼谱峰为定性和定量分析的特征峰。在10-6~10-3mol·L~(-1)浓度范围内拉曼光谱强度与2-MBI浓度的负对数呈现较好的线性关系,线性方程为I=1 237.8logc+8 326.3,线性相关系数为0.999 8,相对标准偏差在0.025~0.084之间,此方法检测2-MBI的检测限为10-7 mol·L~(-1)。这些研究为发展新的针对2-MBI的检测方法奠定了基础。  相似文献   

5.
电解法制备纳米银溶胶及其SERS活性研究   总被引:3,自引:1,他引:2  
分别用柠檬酸三钠溶液、硝酸银和聚乙烯醇混合液作为电解液,用银棒作为电极,加上7 V直流电压,通电1 h,用电解方法得到了纳米银溶胶。为测试该纳米银溶胶是否具有表面增强拉曼散射1(SERS)活性,选用了阳离子型分子碱性品红(Fuchsine basic)、亚甲基蓝(Methylene blue),阴离子型分子苯甲酸(Benzoic acid),甲基橙(Methyl orange)、中性分子吖啶橙(Alcidine orange)、苏丹红(Sudan red)作为测试分子,进行SERS研究,结果发现用两种电解液制备的纳米银都具有很强的SERS活性,但用硝酸银和聚乙烯醇混合液作为电解液制备的纳米银溶胶具有更广泛的SERS 活性。在该方法制备的纳米银上,得到了在常规方法制备的胶态纳米银上及用柠檬酸三钠溶液作为电解液制备的纳米银上得不到的甲基橙分子的SERS谱,对可能的原因进行了讨论。  相似文献   

6.
利用化学方法合成纳米银,调节pH值,加入赖氨酸溶液,通过紫外光谱和动态光散射法研究pH对纳米银及纳米银-赖氨酸体系稳定性的影响,利用表面增强拉曼光谱考察赖氨酸与纳米银的相互作用方式。紫外光谱显示纳米银和纳米银-赖氨酸体系在pH值为5~10时,均具有较强的吸收峰;应用动态光散射测定了不同pH的纳米银及其赖氨酸体系的粒径及强度自相关函数,在pH值为5~10时,粒径分布均匀,DLS自相关曲线平滑,说明纳米银和纳米银-赖氨酸体系稳定性良好;SERS研究了pH为4、7、10时,赖氨酸在银粒子表面的吸附作用,体系出现比较明显的赖氨酸特征峰,当pH为4时,为δ(NH3+)的1444cm~(-1)谱峰和δ(COO-)的1576cm~(-1),此时赖氨酸通过氨根和羧酸根共同与银纳米粒子发生相互作用,当pH为10时,NH_3~+发生去质子化,此时赖氨酸只出现COO-的伸缩振动在1576cm~(-1)处,说明此条件下赖氨酸以羧酸根吸附在银粒子表面。  相似文献   

7.
由于水相中拉曼谱带强度测定困难,本文利用乙醇883.8cm~(-1)作内标,研究了乙醇相银溶胶中SERS峰强与浓度的关系,发现随着2-氨基苯并咪唑浓度的改变,SERS峰强并不与浓度成正比,不同浓度溶液中1237cm~(-1)面内振动的改变显示了2-氨基苯并咪唑吸附取向的变化。  相似文献   

8.
SERS作为一种振动光谱,具有高灵敏度、高选择性、快速无损检测等优点,并且能提供丰富的分子指纹信息,广泛应用于分析化学、材料科学、生命科学等领域~([1])。因此,探究具有高SERS活性的基底成为了研究热点。半导体材料TiO_2由于其化学性质稳定、易得、无毒且具有较好的生物相容性,使其成为人们备受关注的SERS基底。然而,TiO_2相对较弱的SERS活性限制了其在SERS领域的发展。同时,SERS基底的聚集状态难于控制,直接影响其SERS性能的可重现性和稳定性。相关研究表明,对半导体TiO_2的适当改性可有效改善其表面活性,进而提高其SERS活性~([2])。因此,本文开展了强吸附能力的还原氧化石墨烯(rGO)和磁性Fe_3O_4修饰的TiO_2(rGO-TiO_2-Fe_3O_4)作为新型SERS活性基底的研究,实现了优良的SERS性能。磁性rGO-TiO_2-Fe_3O_4基底容易与探针分子分离,便于检测,对4-MBA分子的最低可检测浓度为10-9 mol·L~(-1),显著低于纯TiO_2基底(1.0×10~(-5) mol·L~(-1))。  相似文献   

9.
通过化学法制备了纳米银溶胶基底和微腔型光纤表面增强拉曼散射(SERS)基底,其中光纤SERS基底的微腔结构是通过氢氟酸(H F)腐蚀得到的.实验采用湿法检测,首先将纳米银溶胶基底与罗丹明6G(R6 G)混合,找到增强效果最强时的裸光纤微腔结构,在此结构的基础上采用溶胶自组装法制备银纳米颗粒包覆的光纤SERS基底,通过控...  相似文献   

10.
将具有拉曼信号的三氢-吲哚菁类(Cy3)染料分子标记农药核酸适配体(Aptamer)制备成拉曼检测试剂(Cy3-aptamer),对痕量啶虫脒进行了特异性的表面增强拉曼光谱法(SERS)检测研究。考虑到胶体的稳定和聚凝作用原理,采用聚丙烯酸钠作为分散剂,使作为SERS检测基底材料的银溶胶带负电荷,获得了良好的稳定性和分散性。由于聚丙烯酸钠分散的银溶胶为负电平衡体系,测试时需采用聚沉剂,使具有较高稳定性的银纳米颗粒团聚,形成SERS增强热点,从而提高SERS检测信号。以SERS信号较弱的啶虫脒为探针,考察了银溶胶中加入不同聚沉剂(NaCl, KCl, NaOH, HNO_3, H_3PO_4, H_2SO_4, HCl)对SERS信号的影响,实验结果表明, H~+作为阳离子和PO■作为阴离子组成的电解质聚沉剂,对于带有一定负电荷σ~-基团分子,具有较好的拉曼增强效应。且通过紫外可见分光光谱,进一步说明了表面电荷性质对SERS的增强信号起决定作用。又由于Cy3-aptamer磷酸骨架上带有大量负电荷,其SERS信号较小。故选择带丰富正电荷的精胺分子以消除Cy3-aptamer磷酸骨架上的负电荷,使Cy3-aptemer更易吸附于银溶胶表面,使其产生较强的SERS光谱。此外,考察选择了精胺与Cy3-aptamer以及Cy3-aptamer与农药啶虫脒的最佳反应结合时间分别为5和20 min。最后,建立了定量检测农药啶虫脒的方法,并对检测机理进行了探讨。研究表明,农药啶虫脒在适配体银溶胶特效探针上于1 392 cm~(-1)处的SERS特征峰面积与水的OH伸缩振动峰面积组成相对拉曼峰面积强度,其相对强度与啶虫脒浓度的对数具有良好的负线性关系,浓度范围为1×10~(-8)~2.5×10~(-7) mol·L~(-1)。将所建立的特效检测啶虫脒的方法用于实际水样的检测,回收率为97.4%~99.4%。结果表明,所提出的聚丙烯酸钠分散及精胺修饰的银溶胶有利于捕获Cy3-aptamer及其Cy3-aptamer与啶虫脒的反应物,提高了方法的灵敏度与可靠性。  相似文献   

11.
在钾适配体(ssDNA)探针存在时,ssDNA吸附在纳米银表面,导致纳米银的催化作用弱,而当溶液中存在钾离子时,形成钾离子-ssDNA复合物,使ssDNA从纳米银表面脱附,此时纳米银得到释放,从而纳米银催化作用增强。随着钾离子浓度的增加,脱附的银纳米粒子越多,催化H_2O_2还原HAuCl_4反应加快,随着钾离子加入量的增大,催化反应速率随之显著增强,生成的金纳米溶胶具有较高的共振瑞利散射(RRS)效应,导致体系在300nm处的RRS强度线性增强。钾离子浓度在0~1.5μmol·L~(-1)范围内,于300nm处的RRS强度增强值ΔI呈良好的线性关系。据此,可建立一种间接检测钾离子的RRS方法。  相似文献   

12.
为了快速检测水中痕量多环芳烃(PAHs),制备了一种高灵敏度的三维表面增强拉曼散射(SERS)基底。将GMA-EDMA多孔材料与参数优化的金纳米颗粒相结合,形成了高灵敏度三维SERS活性基底。相比仅用参数优化的金溶胶SERS基底,该三维SERS基底的信号强度有近一个数量级的增强,相比未调pH值的金溶胶基底,增强效果有2~3个数量级的提高,且具有良好的重复性,该基底内探测相对标准偏差(RSD)为4.78%~9.27%,基底间RSD为2.05%。利用该基底对三种较有代表性的多环芳烃菲、芘、苯并(k)荧蒽进行了SERS光谱探测,得到检测限分别为9.0×10~(-10),2.3×10~(-10),5.9×10~(-10) mol·L~(-1)。结果表明,这种检测方法操作简便、重复性好、灵敏度高,可以实现水中多环芳烃的痕量检测。  相似文献   

13.
吡啶,苯甲酸共存体系在Ag溶胶表面上的SERS研究   总被引:3,自引:2,他引:1  
本文研究了吡啶、苯甲酸共吸附在Ag溶胶表面上的SERS谱,发现吡啶、苯甲酸加入顺序的不同对体系的SERS谱的影响不大,且苯甲酸的SERS谱相对强度大于吡啶的相对强度,说明苯甲酸的吸附能力强于吡啶。SERS谱中吡啶的环呼吸振动谱带从正常拉曼谱中的991cm~(-1)位移至1008cm~(-1),并且少量加入苯甲酸对环呼吸振动有进一步的影响,据此定性地讨论了吡啶的吸附取向。  相似文献   

14.
以聚苯乙烯(PS)小球为模板,采用金属辅助刻蚀和湿法化学刻蚀技术,制备大面积冠状硅柱阵列,再原位生长银纳米粒子后得到银覆盖冠状硅柱阵列(Ag/Si CPA)基底。实验表明,制备的基底具有优良的表面增强拉曼散射(SERS)特性,电磁增强因子达到1.81×10~6。同时,将制备的罗丹明分子(R6G)标记的DNA发卡探针与基底链接,在与miRNA-106a互补杂交后进行SERS信号检测,获得相应的剂量-响应曲线。结果表明,基于(Ag/Si CPA)基底的SERS特性,开展miRNA-106a的检测,具有特异性好和灵敏度高的优势,检测范围为1 fmol·L~(-1)~100 pmol·L~(-1),检测极限为0.917 fmol·L~(-1)。此外,与实时荧光定量多聚核苷酸链式反应(RT-qPCR)方法相比,不仅检测结果一致,而且基于SERS光谱技术的检测方法具有更高的灵敏度。  相似文献   

15.
负电性纳米银溶胶SERS活性及稳定性的比较研究   总被引:1,自引:0,他引:1  
用单宁还原硝酸银可制得表面带负电的、对阳离子型分子具有较强SERS效应的纳米银。为了进一步测试负电性纳米银溶胶的SERS活性及稳定性,在室温下用制针剂的封装机将样品(old NCS)封装并保存。两年后与新制备的负电性纳米银溶胶(new NCS)比较,用透射电镜观测发现old NCS与new NCS相比银粒子尺寸增大;用紫外可见吸收光谱测定old NCS的吸收峰为431 nm,new NCS的吸收峰为418 nm,old NCS与new NCS相比吸收峰发生红移。为比较old NCS及new NCS的SERS活性选取阳离子型分子、中性分子及阴离子型分子作为测试分子,用拉曼光谱仪测试这些分子在两种纳米银上的SERS谱,结果发现,阳离子型分子碱性品红、中性分子吖啶橙在old NCS及new NCS上SERS较强,阳离子型分子亚甲基蓝在old NCS上与在new NCS上相比SERS较弱,阴离子型分子苯甲酸在old NCS及new NCS均未观察到SERS信号。  相似文献   

16.
基于酸性介质的条件下,银纳米粒子(AgNPs)与探针分子Rh6G会产生较强的表面增强拉曼散射(Surface enhanced Raman spectroscope,SERS)效应,当溶液中加入Mo(Ⅵ)时,Rh6G与Mo(Ⅵ)发生络合反应形成一个Rh6G-Mo(Ⅵ)复合物,随着Mo(Ⅵ)浓度的增大,游离的Rh6G减少,使得体系的SERS效应降低,当Mo(Ⅵ)浓度在0.02~0.8μg·mL~(-1)范围内,其ΔI_(1 509cm~(-1))值Mo(Ⅵ)浓度呈良好的线性关系,线性方程为ΔI_(1 509cm~(-1))=542.09c+175.24,线性相关系数为0.995 6,检测限为0.008μg·mL~(-1),据此可建立一种Mo(Ⅵ)-Rh6G-AgNPs体系的SERS分析新方法。  相似文献   

17.
表面增强拉曼散射(SERS)增强基底的制备是实现SERS技术高灵敏度探测的关键因素,利用光操控技术制备金属纳米粒子聚集体是近来SERS领域研究的热点。利用飞秒激光湿法刻蚀技术,在硅片表面5 mm×5 mm范围内刻蚀横截面积(宽度×深度)为10μm×7μm, 30μm×12μm, 60μm×15μm, 70μm×19μm和90μm×21μm的狭槽线阵,制备截面积不同的微纳硅基衬底(SiMS)。应用光操控技术结合SERS方法,在金纳米溶胶中加入硅基衬底。并将激光对焦在衬底狭槽内,在光辐射压力的作用下,金纳米粒子沿光束的传播方向运动,聚集于微纳结构表面的狭槽内,形成金纳米粒子聚集体,促进"热点"效应,提高SERS探测的灵敏度,实现了在硅基微纳结构衬底上探测物的SERS增强。实验表明,利用光辐射压力和光梯度力的合力,金属纳米粒子能有效聚集在硅基微纳结构衬底表面的狭槽中,形成更多的"热点",从而可大幅提高SERS增强效果。以芘为探针分子,随着狭槽截面积的增加, SERS信号逐渐增强,狭槽截面积为70μm×19μm时达到最强,超过该截面积后,拉曼信号强度开始降低, SERS强度最高增强了约两个数量级,最低检测浓度为5.0×10~(-9) mol·L~(-1),在低浓度范围内(5.0×10~(-9)~1.0×10~(-7) mol·L~(-1)),芘位于588和1 234 cm~(-1)处特征峰强与浓度的关系曲线呈现较好的线性相关性,其拟合方程及线性相关系数分别为0.992和0.971。以截面积为70μm×19μm的微纳衬底进行了重复性实验,每完成一次实验,关掉激光器,待激光的作用消失,狭槽内聚集的金纳米粒子重新分散在溶液中,进行下一次实验。选取微纳衬底8个不同位置,每个位置重复三次实验,衬底不同位置芘的588和1 234 cm~(-1)两个特征峰峰强的相对标准偏差(RSD)分别为9.9%和2.0%,具有较好的重复性。与仅使用金纳米颗粒相比,该方法保留了金纳米颗粒重复性好的优势,同时具有更高的增强效应和衬底清洗后可重复使用的优点。研究表明,基于硅基微纳结构衬底的光操控-SERS方法,可极大地提高金纳米颗粒的SERS效应,在化学和生物学等领域的物质检测分析方面具有广阔的应用前景。  相似文献   

18.
萃取光度法测定电镀废水中的微量Cr(Ⅵ)   总被引:4,自引:0,他引:4  
利用二甲基吲哚羰花青(DIC)染料与Cr(Ⅵ)配合物的显色反应,对含Cr(Ⅵ)电镀废水中痕量铬(Ⅵ)进行测定。结果表明,在H_2SO_4介质中,甲苯萃取显色反应物具有高的灵敏度,反应产物的最大吸收波长为560nm;摩尔吸光系数为2.5×10~5L·mol(-1)·cm~(-1)。Cr(Ⅵ)量在0.01~2.1mg·L~(-1)范围内符合比尔定律。该法用于测定电镀废水中的铬(Ⅵ),得到了满意的结果。  相似文献   

19.
本文应用表面增强拉曼散射技术以纳米银溶胶作为基底直接对17种葱属植物的挥发性物质进行了检测,进一步用SERS谱图结合化学计量学多变量统计分析,对17种葱属植物进行鉴别分类研究,并提出一种基于SERS的快速、有效的挥发性物质筛选式葱属植物鉴别分类研究方法。对不同年份制作的纳米银溶胶进行了重现性测试,结果显示纳米银溶胶作为SERS基底对葱属植物的挥发性物质检测重现效果较好;对同一植物不同部位的挥发性物质进行检测,结果显示光谱峰位变化不大,只是个别峰的相对强度发生了变化;对17种葱属植物的挥发性物质进行检测,结果显示:17种葱属植物的挥发物的SERS光谱可分为三组,1-丙硫醇增强组、烯丙基甲基硫醚增强组、二烯丙基二硫增强组,说明纳米银溶胶对葱属植物的挥发物具有选择性增强效果;17种葱属植物挥发物的SERS谱结合聚类分析、因子分析、判别分析进行多变量统计分析,分析结果显示,样品能按三个不同增强组进行准确分类。实验结果表明,基于SERS的挥发物筛选式葱属植物鉴别分类研究方法可以为葱属植物分类研究提供参考信息。  相似文献   

20.
微波加热法快速制备纳米银及其SERS活性研究   总被引:3,自引:2,他引:1  
司民真  方炎  董刚  张鹏翔 《光子学报》2008,37(5):1034-1037
将一定浓度的硝酸银及柠檬酸三钠混合后,用微波加热法根据加热时间及加热方式的不同,制备出了5个纳米银溶胶样品.用电泳仪、吸收光谱、透射电镜对这5个样品进行了表征,发现加热时间短时,纳米银表面带正电,加热时间长时纳米银表面带负电,且加热时间长时吸收峰红移,纳米银尺寸增大.为测试该纳米银溶胶是否具有表面增强喇曼散射 (SERS)活性,选用了阳离子型分子碱性品红(Fuchsine basic )、亚甲基蓝(Methylene blue),阴离子型分子苯甲酸(Benzoic acid),中性分子丫啶橙(Alcidine orange)、苏丹红(Sudan red)作为其SERS活性的测试分子,进行SERS研究.结果发现,所制备的纳米银除样品5对苏丹红分子无增强效应外,其余样品对所选分子都具有较好的增强效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号