共查询到18条相似文献,搜索用时 93 毫秒
1.
星系的红移在天文研究中极其重要,星系测光红移的预测对研究宇宙大尺度结构及演变有着重要的研究意义。利用斯隆巡天项目发布的SDSS DR13的150 000个星系的测光及光谱数据进行分析,首先根据颜色特征并基于聚类的方法对星系进行分类,由分类结果可知早型星系的占比较大。对比了三种不同的机器学习算法对早型星系进行测光红移回归预测实验,并找出最优的方法。实验中将星系样本中u, g, r, i, z五个波段的测光值以及两两做差得到的10个颜色特征作为输入数据,首先构建BP网络,使用BP算法对星系的测光红移进行回归预测;然后利用遗传算法(GA)优化BP网络各层参数,将优化后的GA-BP算法应用于早型星系的回归预测试验中。考虑到GA算法的复杂操作会影响预测效率,并且粒子群算法(PSO)不仅稳定性高且操作简单,因此将粒子群算法应用到星系样本中早型星系的测光红移回归预测实验中,进而采用粒子群算法优化BP网络(PSO-BP)。实验中将光谱红移作为期望值,采用均方差(MSE)作为误差分析指标来评判三种算法的精度,将PSO-BP回归预测结果与BP网络模型、GA-BP网络模型进行比较。由实验结果可知,BP网络的MSE值为0.001 92,GA-BP网络的MSE值0.001 728,PSO-BP网络的MSE值为0.001 708。实验结果表明,所用到的PSO-BP优化模型在精度上优于BP神经网络模型和GA-BP神经网络模型,分别提高了11.1%和1.2%;在效率上优于传统的K近邻(KNN)测光红移估计算法, 克服了KNN算法中遍历所有数据样本进行训练的缺点并且其泛化性能优于其它BP网络优化模型。 相似文献
2.
3.
光谱的自动分析对大规模的光谱巡天有着非常重要的意义。文章提出了一种基于相似性度量的星系光谱红移测量方法。方法中采用主分量分析构造星系光谱的静止模板,利用谱线特征确定观测光谱的红移候选,然后根据红移候选进行观测光谱与模板光谱间的相似性度量,所采取的相似性度量策略类似于证据积累的思想,定义为几个相似证据的加权和,从而降低了观测光谱与模板光谱之间的误匹配,提高了红移估计的正确率。通过实验将所提出方法与基于谱线匹配的方法和传统的交叉相关方法进行了比较,实验结果表明:本文方法的正确率较之基于谱线匹配的方法和传统相关法有较大提高。 相似文献
4.
星系通常分为正常星系(NG)与活动星系(AG)两类。文章提出了一种自动获取NG红移的快速有效方法: (1) 由NG模板根据红移范围Ⅰ: 0.0~0.3与Ⅱ: 0.3~0.5模拟得到两类星系样本, 进行PCA变换获得样本特征向量; (2) 利用概率神经网络设计两类样本特征向量的Bayes分类器; (3) 对于实际NG光谱数据, 利用Bayes分类器进行分类确定其红移的范围, 然后在此范围内进行模板匹配得到红移的准确值。与在整个红移范围内的模板匹配方法相比, 此方法不但节省了50%的模板匹配运算量, 而且还大大提高了红移值测量的精度。文章研究结果对于大型光谱巡天所产生的海量数据的自动处理具有重要意义。 相似文献
5.
给出了一种新的类星体光谱的红移测量方法。首先,利用提取出的发射谱线信息确定一组红移候选;然后,按这些红移候选将静止模板光谱红移,计算所得光谱与目标光谱的相关值;最后,确定最大相关值对应的红移候选为目标光谱的红移。相对于已有的基于谱线匹配的方法,此方法的性能受谱线提取效果的影响较小。实验结果表明: 此方法的鲁棒性较好,性能优于基于谱线匹配的方法。 相似文献
6.
一种基于移相误差估计的5步移相算法 总被引:1,自引:0,他引:1
移相误差是用移相法进行相位测量的主要误差。本文提出一种 5步移相算法 ,分两步进行相位计算 ,首先估计实际步进移相的线性移相误差 ,然后再利用此移相误差估计值计算相位分布。移相误差估计公式和相位计算公式简洁 ,算法简单易行 ,对线性移相误差和二次谐波的敏感度低 ,可基本消除线性移相误差对解调相位的影响。对本文提出的算法进行了仿真研究 ,同时给出了 Hariharan 5步算法、Surrel 6步最小算法的仿真结果。结果表明 :本算法明显优于以上两种算法 ,可基本消除线性移相误差引起的相位偏移。本算法适用于作等步移相的相位测量或移相的标定。 相似文献
7.
在防空作战中,目标威胁估计是指挥控制过程的重要一环,是决策和指挥的重要依据。BP神经网络能够解决目标威胁估计问题,但存在收敛速度慢、易陷入局部最优等缺点。提出将遗传算法(Genetic Algorithm,GA)的选择、交叉和变异操作融入到狼群算法(Wolf Pack Algorithm,WPA)中,提出了GA-WPA算法,以提高狼群算法的收敛速度。在此基础上,利用所提出的GA-WPA算法对BP神经网络进行优化,确定最优初始权值和阈值。最后,将优化后的BP神经网络解决地面防空系统目标威胁估计问题。仿真实验表明,所提算法能够有效克服BP神经网络收敛速度慢、易陷入局部最优等缺点,能够提高目标威胁估计的准确性和适应性。 相似文献
8.
BP神经网络是一种多层前馈网络,数据经过网络的输入层、隐含层逐层处理后,由输出层进行输出,通过和期望输出的对比进行反向传播,调整网络参数使输出不断逼近期望输出;在使用BP神经网络对语音特征信号进行分类的过程中,会出现BP神经网络易陷入局部最优解、学习收敛速度慢的问题;针对此问题提出一种基于SFLA优化BP神经网络权值和阀值的方法,引入SFLA算法优化网络权值和阀值,利用SFLA优化后的BP网络模型进行语音特征信号分类;仿真结果表明,经SFLA优化后的BP神经网络与未优化的神经网络相比,不仅训练速度快, 而且误差小,语音特征信号分类的正确率平均提高1.31%。 相似文献
9.
针对标准BP神经网络中收敛速度慢以及易陷入局部最优解等问题,利用粒子群算法的全局搜索性,将粒子群算法应用到BP神经网络训练中建立了PSO-BP神经网络模型,结果表明改进模型不仅可以克服传统 BP 网络收敛速度慢和易陷入局部权值的局限问题,而且很大程度地提高了结果精度和 BP 网络学习能力,将此模型应用到结晶器漏钢预报系统中,并用某钢厂采集到的历史数据对该模型进行训练与测试,与标准BP神经网络测试结果进行分析与比较,实验表明PSO-BP网络模型预报更加实时、准确,具有很好的应用前景。 相似文献
10.
针对位置敏感探测器(PSD)固有的非线性,提出一种基于BP优化算法的PSD非线性校正方法。以传统的牛顿算法为基础,推导了Levenberg Marquardt算法,即BP优化算法的相关原理。采用Matlab软件编程,网络采用具有2个中间隐层的结构形式,2个隐层使用的神经元数分别为40和30,最大训练次数取500次,利用sim函数计算并仿真网络输出,网络输出误差均在0.001 mm之内,其中最大误差不超过0.003 mm,实现了对PSD非线性的校正。 相似文献
11.
高炉炼铁是一个复杂的多变量系统,而现行的操作制度是基于炉长经验的参数设置模式,导致能源尤其是煤粉的消耗常常处于“盲目”状态。本文综合炼铁工艺理论和高炉专家经验,针对白云鄂博矿石冶炼的特殊性,采用筛选出的优化数据,利用遗传算法所固有的全局搜索性能优化BP神经网络模型的权值和阈值,分别建立了基于遗传算法优化BP神经网络的高炉喷煤量优化预测模型以及工艺指标(铁水[Si]含量及入炉焦比)预测模型。优化数据的利用使得上述模型可以根据高炉当前炉况输出喷煤量的最佳优化设定值,并预测出相对应的工艺指标变化趋势。实际应用表明,本方法能够给现场操作人员提供操作指导,实现高炉稳定顺行、提高经济效益的目的。 相似文献
12.
基于BP神经网络的传感器网络动态采样模型研究 总被引:2,自引:0,他引:2
能耗控制对于农业环境监测无线传感器网络系统具有重要意义。基于误差反向传播的多层前馈神经网络预测和阈值分析建立了一种土壤温度传感器网络动态采样模型,实现了基于土壤温度周期变化特征的采样频率实时调整方法,达到减少网络冗余数据,降低网络功耗的目的。以环境温度和空气相对湿度为BP神经网络实测输入,土壤温度为预测输出,通过判断输出是否进入阈值区间动态调整采样周期。仿真实验结果表明,对于具有周期性特点的土壤温度,BP网络模型对其预测值和实测值之间的均方根误差RMSE及绝对误差AE分别为0.83℃和0.54℃。相比于连续采样,阈值分析动态采样次数减少30%。 相似文献
13.
耙吸挖泥船泥泵管线模型是一个复杂的、非线性的动态模型,影响模型准确性的参数较多。为了根据当前施工条件和流量的优化值准确地预测转速,为施工人员提供参考,提高疏浚效率,采用了遗传算法改进的BP神经网络对泥泵转速进行预测。首先,遗传算法对BP神经网络的初始权值和阈值进行优化。然后,BP神经网络根据优化值对网络进行训练并对转速进行预测。为了验证该方法的有效性,将遗传BP神经网络的预测输出和实测泥泵转速进行对比。仿真结果表明:遗传BP神经网络具有很强的非线性拟合能力和全局搜索能力,能够准确地预测泥泵转速。该预测输出可为施工人员提供参考,以便改变泥泵转速,提高疏浚效率。 相似文献
14.
15.
16.
17.
煤矿安全对煤炭工业的健康持续发展至关重要,而煤矿水灾又是煤矿事故的重大隐患,因此煤矿水源数据的处理对于预防矿井突水事故具有重要意义.实验在激光器的辅助下利用激光诱导荧光技术获取7种水源的数据信息,设定激光发射功率为100 mW,向被测水体发射波长405 nm激光,获取实验水样210组的荧光光谱数据,为了剔除光谱在采集过... 相似文献
18.
We focus on the problem that the Grover algorithm is not suitable for the completely unknown proportion of target solutions. Considering whether the existing quantum classifier used by the current quantum neural network (QNN) to complete the classification task can solve the problem of the classical classifier, this paper proposes a binary quantum neural network classifical model based on an optimized Grover algorithm based on partial diffusion. Trial and error is adopted to extend the partial diffusion quantum search algorithm with the known proportion of target solutions to the unknown state, and to apply the characteristics of the supervised learning of the quantum neural network to binary classify the classified data. Experiments show that the proposed method can effectively retrieve quantum states with similar features. The test accuracy of BQM retrieval under the depolarization noise at the 20th period can reach 97% when the depolarization rate is 0.1. It improves the retrieval accuracy by about 4% and 10% compared with MSE and BCE in the same environment. 相似文献