共查询到13条相似文献,搜索用时 70 毫秒
1.
为了有效预防宫颈癌的发生以及更好的术后跟踪治疗,实现对HPV病毒DNA快速可靠的检测是至关重要的。与传统方法相比,通过缩短检测时间和减少劳动力来进一步简化HPV病毒DNA检测仍然是一个挑战。该研究提出了一种基于CRISPR/Cas12a对基因的SERS检测方法。主要利用目标病毒核酸与Cas12a、 crRNA形成三元复合体,开启切割体系中的底物单链DNA(ssDNA)。ssDNA可以连接探针1(AuNPs@MBN@DNA1)和探针2(AuNPs@MBN@DNA2)。探针1和探针2是否被桥连可引起SERS信号的变化,即可知待检样品中是否含有目标核酸。利用特异性的crRNA可以实现对病毒核酸的准确快速检测。该传感方法可在40 min内实现对HPV基因的高灵敏度检测。由于DNA探针和crRNA设计的灵活性,该CRISPR/Cas-SERS传感系统可以扩展成一种通用的基因检测工具,有望在体外诊断领域和检测中具有广阔的应用前景。 相似文献
2.
基于径向基函数神经网络的高光谱遥感图像分类 总被引:4,自引:1,他引:4
从径向基函数神经网络的理论出发,针对高光谱数据的特点,设计了有效的特征提取模型,再与径向基函数神经网络的输入层连接,建立了一个新的径向基函数神经网络的高光谱遥感影像分类模型,并用国产OMISII传感器获得的64波段数据进行试验。首先进行了最小噪声分离变换,提取了1~20个分量的数据,使用提取后的数据(20维)、提取后数据的纹理变换(20维)和主成分分析的前(20维),组成了60维向量数据进行分类处理,这种分类器结构简单、容易训练、收敛速度快,其分类精度达到69.27%,高于BP神经网络分类算法(51.20%)以及常用的最小距离分类(MDC)算法(40.88%)。通过对结果和过程进行分析,实验证明径向基函数神经网络在高光谱遥感分类中具有较好的适用性。 相似文献
3.
提出了一种对光谱信号识别的新方法。针对光谱信号的特征 ,我们设计了基于径向基函数神经网络组成的统计混合模型 ,并构造了识别系统的代价函数。通过优化系统的代价函数 ,导出了类EM算法去估计混合模型的参数 ,从而构建对光谱特征识别的识别器。利用实际的拉曼光谱 ,对本文所提出的估计模型参数的算法与建立的光谱识别器进行了检验。我们还讨论了利用特征波长与相应的光谱强度 ,以及利用主分量分析组成输入特征矢量 ,及其这些输入特征矢量对光谱识别器应用的效果。实验结果表明 ,所提出的算法可以有效地估计模型参数 ,其建立的光谱识别模型具有较高的识别准确率。所提出的对光谱信号识别的方法通用性强 ,因此具有较为广阔的应用前景。 相似文献
4.
5.
以凡纳滨对虾为研究对象,探索一种高效快速无损的新鲜度检测方法。挥发性盐基氮(TVB-N)是判断虾新鲜度的重要化学指标,然而传统方法耗时耗力,限制了大批量的实时检测。高光谱技术是一种集成图像和光谱信息的分析技术,高光谱图像上的每个像素包含整个波段的光谱信息,近年来,该技术已经被应用于肉类新鲜度检测。连续8 d采集了样品的860~1 700 nm高光谱数据,在去除异常样本后确定150组试验样本,每组采集254维光谱数据,对原始的高光谱图像进行黑白校正,并从高光谱图像中提取光谱数据。为确保所提取的光谱数据和TVB-N指数之间有对应关系,所选择的感兴趣区域的位置保持固定在虾样本的第二和第四肢。计算了感兴趣区域的平均光谱以获得光谱数据矩阵,该矩阵被转换成ASCII码并保存。同时,通过凯氏定氮法获得TVB-N真实值含量。为减少环境和虾表面的高含水量的干扰,有效地消除不相关的信息和噪声,预处理方法是多元散射校正(MSC)算法,并选择出7个敏感波段,分别为875, 894, 919, 953, 983, 1 024和1 094 nm。最后,以120组训练集样本,建立了凡纳滨对虾TVB-N总量的定量预测... 相似文献
6.
鸭梨黑斑病在感染早期阶段引起感染区域外观的变化很微小,肉眼难以观察,因此对其早期识别仍然是困难的。结合高光谱成像技术和Stacking集成学习算法,实现了鸭梨黑斑病的潜育期识别检测。首先,获取健康和不同腐败程度黑斑病鸭梨样品的原始高光谱图像,基于图像选取感兴趣区域(ROI),然后对提取的平均光谱数据进行一阶导数(FD)、二阶导数(SD)、标准正态变量变换(SNVT)及组合SNV-FD和SNV-SD预处理后,采用竞争性自适应权重取样法(CARS)提取特征波长的光谱信息。最后基于筛选出的特征信息分别建立最小二乘支持向量机(LS-SVM)、 K最邻近法(KNN)、随机森林(RF)和线性判别分析(LDA)分类模型。其中,预测效果最好的组合为SNV-FD-LSSVM,SNV-KNN和SNV-FD-RF,准确率分别达到94%, 88%和88%。四种算法建立的模型中,测试集准确率不低于85.00%的个数分别为5、 3、 2和0,因此优选出LS-SVM、 KNN和RF三个分类器用于后续的集成学习。为提高模型准确率,以优选出的LS-SVM、 KNN和RF三种模型作为基分类器构建Stacking学习框架,... 相似文献
7.
为实现航空发动机的在巡航过程中的实时监控及时发现发动机状态参数的异常变化,提高飞行安全水平,提出基于航空发动机燃油流量(FF)基线求解偏差值的一种算法。依据设定的飞行数据筛选原则和预处理方法建立模型样本,设计以高斯函数为隐含层激励函数和以线性函数为输出层激励函数的多输入单输出的RBF神经网络,通过Pearson相关性分析确定网络的输入节点。使用该网络得到预测燃油流量基线,再与实际燃油流量做比较可得燃油流量偏差值。最后对预测偏差值和观测偏差值实施两配对非参数检验以验证网络精度,结果表明该方法是计算航空发动机巡航状态下燃油流量偏差值的一种有效算法。 相似文献
8.
提出了一种将压缩感知和特征基函数结合的方法来计算三维导体目标的雷达散射截面.利用压缩感知理论,将随机选择的矩量法阻抗矩阵作为测量矩阵,将激励电压视为测量值,然后再用恢复算法可实现二维或二维半目标感应电流的求解.对于三维导体目标,使用Rao-Wilton-Glisson基函数表示的感应电流在常用的离散余弦变换基、小波基等稀疏基上不稀疏.为此,本文将计算出的目标特征基函数作为稀疏基,用广义正交匹配追踪算法作为恢复算法来加速恢复过程,并应用到三维导体目标的雷达散射截面计算中.数值结果证明了本文方法的准确性与高效性. 相似文献
9.
高精度的激光雷达探测对发射波长的精确定标和稳定有极其严格的要求,可调谐激光器进行多次波长调节时存在的激光器空回问题会严重影响系统的探测精度。为此,提出了一种解决可调谐激光器空回问题的算法,得出了通过来回跳转使正负误差相抵消以消除空回误差的方法,并首先将其应用到大气CO2浓度垂直廓线高精度探测中的稳频部分。通过多次实验表明,该算法提高了可调谐激光器的激光波长调节精度,消除了激光器多次反转调节波长时空回误差对测量精度的影响,弥补了机械转动进行波长调节的不足,对高光谱激光技术的发展有十分重要的意义。 相似文献
10.
为探究一种快速、可靠的化橘红检测方法,本实验分别采用傅里叶变换衰减全反射红外光谱法和荧光光谱成像技术结合多层感知器(MLP)神经网络所构建的模式识别方法,对化橘红进行鉴别,并对两种方法进行了比较。实验以81个正毛化橘红,37个其他品种橘红共118个样品为研究对象,采集所有样品的红外光谱和荧光光谱图像。根据光谱曲线中不同样品间的差异,取红外光谱中550-1800 cm-1区段范围内的光谱数据和荧光光谱曲线中的400~720 nm区段的光谱数据进行分析,应用主成分分析法(PCA)对化橘红的光谱数据进行降维处理,再结合MLP神经网络对化橘红样品进行判别分析。实验中分别使用多元散射校正(MSC)、标准正态变量校正(SNV)、一阶导(FD)、二阶导(SD)以及Savitzky-Golay(SG)平滑数据预处理方法,并比较他们对鉴别模型的影响。分析结果表明:利用红外光谱法(FTIR/ATR),经由Savitzky-Golay(SG)平滑预处理得到的数据,通过隐层函数为sigmoid的三层MLP模型,能够得到最优正毛化橘红识别率,其结果训练集和测试集的识别率都为100%;利用荧光光谱成像技术,由多元散射(MSC)预处理的结果是最理想的。经过预处理的数据,通过隐层函数为sigmoid函数的三层MLP模型,训练集识别率达到100%,测试集识别率达到96.7%。由此可见,衰减全反射红外光谱法(FTIR/ATR)和荧光光谱成像技术分别与MLP神经网络构建的识别模式,均可对化橘红的判别达到快速、可靠的效果。 相似文献
11.
Nondestructive methods are of utmost importance for honey characterization. This study investigates the potential application of VIS-NIR hyperspectral imaging for detection of honey flower origin using machine learning techniques. Hyperspectral images of 52 honey samples were taken in transmittance mode in the visible/near infrared (VIS-NIR) range (400–1000 nm). Three different machine learning algorithms were implemented to predict honey floral origin using honey spectral images. These methods, included radial basis function (RBF) network, support vector machine (SVM), and random forest (RF). Principal component analysis (PCA) was also exploited for dimensionality reduction. According to the obtained results, the best classifier (RBF) achieved a precision of 94% in a fivefold cross validation experiment using only the first two PCs. Mapping of the classifier results to the test set images showed 90% accuracy for honey images. Three types of honey including buckwheat, rapeseed and heather were classified with 100% accuracy. The proposed approach has great potential for honey floral origin detection. As some other honey properties can also be predicted using image features, in addition to floral origin detection, this method may be applied to predict other honey characteristics. 相似文献
12.
提出了利用可见/近红外光谱技术快速无损鉴别航天育种番茄品种的方法,采用偏最小二乘法对光谱特征信息进行提取,与神经网络结合建立番茄品种的鉴别模型.该模型将提取后的主成分作为神经网络的输入,加速了神经网络的训练速度.同时采用小波变换对大量光谱数据进行压缩,并结合神经网络建立番茄品种鉴别模型,该模型将压缩后的数据作为神经网络... 相似文献
13.
用于流体动力学诊断的强流LIA是庞大而复杂的系统,其性能预测和评估是十分困难的。针对强流LIA大量的单次快脉冲非平稳信号,提出基于小波包分析与RBF神经网络技术相结合实现故障智能诊断和性能评价的方法。该方法以强流LIA高维信号的小波包结点能量提取的特征向量来表征信号平顶、脉宽以及暂态特性。在此基础上,建立了“神龙一号”加速器腔电压及注入器出口束流故障诊断与性能评价原型系统,该系统不仅可进行故障诊断和性能评价,还可探测到加速器运行参数的变化趋势,为加速器的精细维护提供预测信息。 相似文献