首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We provide an analog of the Newton–Kantorovich theorem for a certain class of nonsmooth operators. This class includes smooth operators as well as nonsmooth reformulations of variational inequalities. It turns out that under weaker hypotheses we can provide under the same computational cost over earlier works [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305] a semilocal convergence analysis with the following advantages: finer error bounds on the distances involved and a more precise information on the location of the solution. In the local case not examined in [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305] we can show how to enlarge the radius of convergence and also obtain finer error estimates. Numerical examples are also provided to show that in the semilocal case our results can apply where others [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305] fail, whereas in the local case we can obtain a larger radius of convergence than before [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305].  相似文献   

2.
The convergence of iterative methods for solving nonlinear operator equations in Banach spaces is established from the convergence of majorizing sequences. An alternative approach is developed to establish this convergence by using recurrence relations. For example, the recurrence relations are used in establishing the convergence of Newton's method [L.B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E. Krieger, New York, 1979] and the third order methods such as Halley's, Chebyshev's and super Halley's [V. Candela, A. Marquina, Recurrence relations for rational cubic methods I: the Halley method, Computing 44 (1990) 169–184; V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: the Halley method, Computing 45 (1990) 355–367; J.A. Ezquerro, M.A. Hernández, Recurrence relations for Chebyshev-type methods, Appl. Math. Optim. 41 (2000) 227–236; J.M. Gutiérrez, M.A. Hernández, Third-order iterative methods for operators with bounded second derivative, J. Comput. Appl. Math. 82 (1997) 171–183; J.M. Gutiérrez, M.A. Hernández, Recurrence relations for the Super–Halley method, Comput. Math. Appl. 7(36) (1998) 1–8; M.A. Hernández, Chebyshev's approximation algorithms and applications, Comput. Math. Appl. 41 (2001) 433–445 [10]].  相似文献   

3.
The notions of Lipschitz conditions with LL average are introduced to the study of convergence analysis of Gauss–Newton’s method for singular systems of equations. Unified convergence criteria ensuring the convergence of Gauss–Newton’s method for one kind of singular systems of equations with constant rank derivatives are established and unified estimates of radii of convergence balls are also obtained. Applications to some special cases such as the Kantorovich type conditions, γγ-conditions and the Smale point estimate theory are provided and some important known results are extended and/or improved.  相似文献   

4.
We use Newton’s method to approximate a locally unique solution of an equation in a Banach space setting. We introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton’s method than before [J. Appell, E. De Pascale, J.V. Lysenko, P.P. Zabrejko, New results on Newton–Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. Optim. 18 (1997) 1–17; I.K. Argyros, The theory and application of abstract polynomial equations, in: Mathematics Series, St. Lucie/CRC/Lewis Publ., Boca Raton, Florida, USA, 1998; I.K. Argyros, Concerning the “terra incognita” between convergence regions of two Newton methods, Nonlinear Anal. 62 (2005) 179–194; I.K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer-Verlag Publ., New York, 2008; S. Chandrasekhar, Radiative Transfer, Dover Publ., New York, 1960; F. Cianciaruso, E. De Pascale, Newton–Kantorovich approximations when the derivative is Hölderian: Old and new results, Numer. Funct. Anal. Optim. 24 (2003) 713–723; N.T. Demidovich, P.P. Zabrejko, Ju.V. Lysenko, Some remarks on the Newton–Kantorovich method for nonlinear equations with Hölder continuous linearizations, Izv. Akad. Nauk Belorus 3 (1993) 22–26. (in Russian); E. De Pascale, P.P. Zabrejko, Convergence of the Newton–Kantorovich method under Vertgeim conditions: A new improvement, Z. Anal. Anwendvugen 17 (1998) 271–280; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; J.V. Lysenko, Conditions for the convergence of the Newton–Kantorovich method for nonlinear equations with Hölder linearizations, Dokl. Akad. Nauk BSSR 38 (1994) 20–24. (in Russian); B.A. Vertgeim, On conditions for the applicability of Newton’s method, (Russian), Dokl. Akad. Nauk., SSSR 110 (1956) 719–722; B.A. Vertgeim, On some methods for the approximate solution of nonlinear functional equations in Banach spaces, Uspekhi Mat. Nauk 12 (1957) 166–169. (in Russian); English transl.:; Amer. Math. Soc. Transl. 16 (1960) 378–382] provided that the Fréchet-derivative of the operator involved is pp-Hölder continuous (p∈(0,1]p(0,1]).  相似文献   

5.
Recent literature shows that for certain classes of fractional differential equations the monotone iterative technique fails to guarantee the quadratic convergence of the quasilinearization method. The present work proves the quadratic convergence of the quasilinearization method and the existence and uniqueness of the solution of such a class of fractional differential equations. Our analysis depends upon the classical Kantorovich theorem on Newton's method. Various examples are discussed in order to illustrate our approach.  相似文献   

6.
We provided in [14] and [15] a semilocal convergence analysis for Newton's method on a Banach space setting, by splitting the given operator. In this study, we improve the error bounds, order of convergence, and simplify the sufficient convergence conditions. Our results compare favorably with the Newton-Kantorovich theorem for solving equations.  相似文献   

7.
We provide a semilocal convergence analysis for Newton-like methods using the ωω-versions of the famous Newton–Kantorovich theorem (Argyros (2004) [1], Argyros (2007) [3], Kantorovich and Akilov (1982) [13]). In the special case of Newton’s method, our results have the following advantages over the corresponding ones (Ezquerro and Hernaández (2002) [10], Proinov (2010) [17]) under the same information and computational cost: finer error estimates on the distances involved; at least as precise information on the location of the solution, and weaker sufficient convergence conditions.  相似文献   

8.
A one parameter family of iterative methods for the simultaneous approximation of simple complex zeros of a polynomial, based on a cubically convergent Hansen–Patrick's family, is studied. We show that the convergence of the basic family of the fourth order can be increased to five and six using Newton's and Halley's corrections, respectively. Since these corrections use the already calculated values, the computational efficiency of the accelerated methods is significantly increased. Further acceleration is achieved by applying the Gauss–Seidel approach (single-step mode). One of the most important problems in solving nonlinear equations, the construction of initial conditions which provide both the guaranteed and fast convergence, is considered for the proposed accelerated family. These conditions are computationally verifiable; they depend only on the polynomial coefficients, its degree and initial approximations, which is of practical importance. Some modifications of the considered family, providing the computation of multiple zeros of polynomials and simple zeros of a wide class of analytic functions, are also studied. Numerical examples demonstrate the convergence properties of the presented family of root-finding methods.  相似文献   

9.
Viscosity approximation methods for a family of finite nonexpansive mappings are established in Banach spaces. The main theorems extend the main results of Moudafi [Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000) 46–55] and Xu [Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279–291] to the case of finite mappings. Our results also improve and unify the corresponding results of Bauschke [The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996) 150–159], Browder [Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Archiv. Ration. Mech. Anal. 24 (1967) 82–90], Cho et al. [Some control conditions on iterative methods, Commun. Appl. Nonlinear Anal. 12 (2) (2005) 27–34], Ha and Jung [Strong convergence theorems for accretive operators in Banach spaces, J. Math. Anal. Appl. 147 (1990) 330–339], Halpern [Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957–961], Jung [Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005) 509–520], Jung et al. [Iterative schemes with some control conditions for a family of finite nonexpansive mappings in Banach space, Fixed Point Theory Appl. 2005 (2) (2005) 125–135], Jung and Kim [Convergence of approximate sequences for compositions of nonexpansive mappings in Banach spaces, Bull. Korean Math. Soc. 34 (1) (1997) 93–102], Lions [Approximation de points fixes de contractions, C.R. Acad. Sci. Ser. A-B, Paris 284 (1977) 1357–1359], O’Hara et al. [Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 54 (2003) 1417–1426], Reich [Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287–292], Shioji and Takahashi [Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (12) (1997) 3641–3645], Takahashi and Ueda [On Reich's strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984) 546–553], Wittmann [Approximation of fixed points of nonexpansive mappings, Arch. Math. 59 (1992) 486–491], Xu [Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2) (2002) 240–256], and Zhou et al. [Strong convergence theorems on an iterative method for a family nonexpansive mappings in reflexive Banach spaces, Appl. Math. Comput., in press] among others.  相似文献   

10.
In this paper we propose a nonmonotone trust region method. Unlike traditional nonmonotone trust region method, the nonmonotone technique applied to our method is based on the nonmonotone line search technique proposed by Zhang and Hager [A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim. 14(4) (2004) 1043–1056] instead of that presented by Grippo et al. [A nonmonotone line search technique for Newton's method, SIAM J. Numer. Anal. 23(4) (1986) 707–716]. So the method requires nonincreasing of a special weighted average of the successive function values. Global and superlinear convergence of the method are proved under suitable conditions. Preliminary numerical results show that the method is efficient for unconstrained optimization problems.  相似文献   

11.
The Mann iterations for nonexpansive mappings have in general only weak convergence in a Hilbert space. We modify an iterative method of Mann's type introduced by Nakajo and Takahashi [Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372–379] for nonexpansive mappings and prove strong convergence of our modified Mann's iteration processes for asymptotically nonexpansive mappings and semigroups.  相似文献   

12.
Recently, there has been some progress on Newton-type methods with cubic convergence that do not require the computation of second derivatives. Weerakoon and Fernando (Appl. Math. Lett. 13 (2000) 87) derived the Newton method and a cubically convergent variant by rectangular and trapezoidal approximations to Newton's theorem, while Frontini and Sormani (J. Comput. Appl. Math. 156 (2003) 345; 140 (2003) 419 derived further cubically convergent variants by using different approximations to Newton's theorem. Homeier (J. Comput. Appl. Math. 157 (2003) 227; 169 (2004) 161) independently derived one of the latter variants and extended it to the multivariate case. Here, we show that one can modify the Werrakoon–Fernando approach by using Newton's theorem for the inverse function and derive a new class of cubically convergent Newton-type methods.  相似文献   

13.
We provide two types of semilocal convergence theorems for approximating a solution of an equation in a Banach space setting using an inexact Newton method [I.K. Argyros, Relation between forcing sequences and inexact Newton iterates in Banach spaces, Computing 63 (2) (1999) 134–144; I.K. Argyros, A new convergence theorem for the inexact Newton method based on assumptions involving the second Fréchet-derivative, Comput. Appl. Math. 37 (7) (1999) 109–115; I.K. Argyros, Forcing sequences and inexact Newton iterates in Banach space, Appl. Math. Lett. 13 (1) (2000) 77–80; I.K. Argyros, Local convergence of inexact Newton-like iterative methods and applications, Comput. Math. Appl. 39 (2000) 69–75; I.K. Argyros, Computational Theory of Iterative Methods, in: C.K. Chui, L. Wuytack (Eds.), in: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co., New York, USA, 2007; X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231–242]. By using more precise majorizing sequences than before [X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231–242; Z.D. Huang, On the convergence of inexact Newton method, J. Zheijiang University, Nat. Sci. Ed. 30 (4) (2003) 393–396; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; X.H. Wang, Convergence on the iteration of Halley family in weak condition, Chinese Sci. Bull. 42 (7) (1997) 552–555; T.J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (3) (1984) 583–590], we provide (under the same computational cost) under the same or weaker hypotheses: finer error bounds on the distances involved; an at least as precise information on the location of the solution. Moreover if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained.  相似文献   

14.
For analytic functions the remainder term of Gauss–Radau quadrature formulae can be represented as a contour integral with a complex kernel. We study the kernel on elliptic contours with foci at the points ±1±1 and a sum of semi-axes ?>1?>1 for the Chebyshev weight function of the second kind. Starting from explicit expressions of the corresponding kernels the location of their maximum modulus on ellipses is determined. The corresponding Gautschi's conjecture from [On the remainder term for analytic functions of Gauss–Lobatto and Gauss–Radau quadratures, Rocky Mountain J. Math. 21 (1991), 209–226] is proved.  相似文献   

15.
《Optimization》2012,61(7):983-1004
In this article, a modification on Newton's direction for solving problems of unconstrained optimization is presented. As it is known, a major disadvantage of Newton's method is its slowness or non-convergence for the initial point not being close to optima's neighbourhood. The proposed method generally guarantees the decrement of the norm of the gradient or the value of the objective function at every iteration, contributing to the efficiency of Newton's method. The quadratic convergence of the proposed iterative scheme and the enlargement of the radius of convergence area are proved. The proposed algorithm has been implemented and tested on several well-known test functions.  相似文献   

16.
Newton's method and Kurchatov's method are iterative processes known for their fast speed of convergence. We construct from both methods an iterative method to approximate solutions of nonlinear equations given by a nondifferentiable operator, and we study its semilocal convergence in Banach spaces. Finally, we consider several applications of this new iterative process.  相似文献   

17.
In this paper, we established strong convergence theorems for a common fixed point of two asymptotically nonexpansive mappings and for a common fixed point of two asymptotically nonexpansive semigroups by using the hybrid method in a Hilbert space. Moreover, we also proved a strong convergence theorem for a common fixed point of two nonexpansive mappings. Our results extend and improve the recent ones announced by Kim and Xu [T.W. Kim, H.W. Xu, Strong convergence of modified Mann iteration for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006) 1140–1152], Nakajo and Takahashi [K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372–379], and many others.  相似文献   

18.
In this paper, we study the quadratic matrix equations. To improve the application of iterative schemes, we use a transform of the quadratic matrix equation into an equivalent fixed‐point equation. Then, we consider an iterative process of Chebyshev‐type to solve this equation. We prove that this iterative scheme is more efficient than Newton's method. Moreover, we obtain a local convergence result for this iterative scheme. We finish showing, by an application to noisy Wiener‐Hopf problems, that the iterative process considered is computationally more efficient than Newton's method.  相似文献   

19.
A new semilocal convergence theorem for Newton's method is established for solving a nonlinear equation F(x) = 0, defined in Banach spaces. It is assumed that the operator F is twice Fréchet differentiable, and F″ satisfies a Lipschitz type condition. Results on uniqueness of solution and error estimates are also given. Finally, these results are compared with those that use Kantorovich conditions.  相似文献   

20.
Halley's method is a higher order iteration method for the solution of nonlinear systems of equations. Unlike Newton's method, which converges quadratically in the vicinity of the solution, Halley's method can exhibit a cubic order of convergence. The equations of Halley's method for multiple dimensions are derived using Padé approximants and inverse one-point interpolation, as proposed by Cuyt. The investigation of the performance of Halley's method concentrates on eight-node volume elements for nonlinear deformations using Staint Venant-Kirchhoff's constitutive law, as well as a geometric linear theory of von Mises plasticity. The comparison with Newton's method reveals the sensibility of Halley's method, in view of the radius of attraction but also demonstrates the advantages of Halley's method considering simulation costs and the order of convergence. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号