首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A new fast algorithm is presented for the multidimensional discrete Fourier transform (DFT). This algorithm is derived using an interesting technique called “vector coding” (VC), and we call it the vector-coding fast Fourier transform (VC-FFT) algorithm. Since the VC-FFT is an extension of the Cooley–Tukey algorithm from 1-D to multidimensional form, the structure of the program is as simple as the Cooley–Tukey fast Fourier transform (FFT). The new algorithm significantly reduces the number of multiplications and recursive stages. The VC-FFT therefore comprehensively reduces the complexity of the algorithm as compared with other current multidimensional DFT algorithms.  相似文献   

2.
In this paper we study the error behavior of the well known fast Fourier transform for nonequispaced data (NFFT) with respect to the \(\mathcal {L}_{2}\)-norm. We compare the arising errors for different window functions and show that the accuracy of the algorithm can be significantly improved by modifying the shape of the window function. Based on the considered error estimates for different window functions we are able to state an easy and efficient method to tune the involved parameters automatically. The numerical examples show that the optimal parameters depend on the given Fourier coefficients, which are assumed not to be of a random structure or roughly of the same magnitude but rather subject to a certain decrease.  相似文献   

3.
Summary Here we present a fully discretized projection method with Fourier series which is based on a modification of the fast Fourier transform. The method is applied to systems of integro-differential equations with the Cauchy kernel, boundary integral equations from the boundary element method and, more generally, to certain elliptic pseudodifferential equations on closed smooth curves. We use Gaussian quadratures on families of equidistant partitions combined with the fast Fourier transform. This yields an extremely accurate and fast numerical scheme. We present complete asymptotic error estimates including the quadrature errors. These are quasioptimal and of exponential order for analytic data. Numerical experiments for a scattering problem, the clamped plate and plane estatostatics confirm the theoretical convergence rates and show high accuracy.  相似文献   

4.
The discrete Fourier transform in d dimensions with equispaced knots in space and frequency domain can be computed by the fast Fourier transform (FFT) in arithmetic operations. In order to circumvent the ‘curse of dimensionality’ in multivariate approximation, interpolations on sparse grids were introduced. In particular, for frequencies chosen from an hyperbolic cross and spatial knots on a sparse grid fast Fourier transforms that need only arithmetic operations were developed. Recently, the FFT was generalised to nonequispaced spatial knots by the so-called NFFT. In this paper, we propose an algorithm for the fast Fourier transform on hyperbolic cross points for nonequispaced spatial knots in two and three dimensions. We call this algorithm sparse NFFT (SNFFT). Our new algorithm is based on the NFFT and an appropriate partitioning of the hyperbolic cross. Numerical examples confirm our theoretical results.  相似文献   

5.
Deconvolution problems with a finite observation window require appropriate models of the unknown signal in order to guarantee uniqueness of the solution. For this purpose it has recently been suggested to impose some kind of antireflectivity of the signal. With this constraint, the deconvolution problem can be solved with an appropriate modification of the fast sine transform, provided that the convolution kernel is symmetric. The corresponding transformation is called the antireflective transform. In this work we determine the condition number of the antireflective transform to first order, and use this to show that the so-called reblurring variant of Tikhonov regularization for deconvolution problems is a regularization method. Moreover, we establish upper bounds for the regularization error of the reblurring strategy that hold uniformly with respect to the size n of the algebraic system, even though the condition number of the antireflective transform grows with n. We briefly sketch how our results extend to higher space dimensions.  相似文献   

6.
In this paper we consider the numerical stability of fast algorithms for discrete cosine transform (DCT) of type III and II, respectively. We show that various fast DCTs can possess a very different behaviour of numerical stability. By matrix factorizations we find that a complex fast DCT which is based mainly on a fast Fouier transform has a better numerical stability than a real fast DCT despite its larger arithmetical complexity. Numerical tests illustrate our theoretical results.  相似文献   

7.
In this article, we suggest a new Fourier transform based algorithm for the reconstruction of functions from their nonstandard sampled Radon transform. The algorithm incorporates recently developed fast Fourier transforms for nonequispaced data. We estimate the corresponding aliasing error in dependence on the sampling geometry of the Radon transform and confirm our theoretical results by numerical examples.  相似文献   

8.
An efficient calculation of NFFT (nonequispaced fast Fourier transforms) is always a challenging task in a variety of application areas, from medical imaging to radio astronomy to chemical simulation. In this article, a new theoretical derivation is proposed for NFFT based on gridding algorithm and new strategies are proposed for the implementation of both forward NFFT and its inverse on both CPU and GPU. The GPU-based version, namely CUNFFT, adopts CUDA (Compute Unified Device Architecture) technology, which supports a fine-grained parallel computing scheme. The approximation errors introduced in the algorithm are discussed with respect to different window functions. Finally, benchmark calculations are executed to illustrate the accuracy and performance of NFFT and CUNFFT. The results show that CUNFFT is not only with high accuracy, but also substantially faster than conventional NFFT on CPU.  相似文献   

9.
Summary The problem of inverting the Radon transform, i.e. the reconstruction of a function inR 2 from its line integrals arises e.g. in computerized tomography and in nondestructive testing. In the present paper the least squares method with piecewise constant trial functions is investigated. An error estimate is derived. An implementation using the fast Fourier transform is described and numerical results are reported.  相似文献   

10.
Computations with univariate polynomials, like the evaluation of product, quotient, remainder, greatest common divisor, etc, are closely related to linear algebra computations performed with structured matrices having the Toeplitz-like or the Hankel-like structures.

The discrete Fourier transform, and the FFT algorithms for its computation, constitute a powerful tool for the design and analysis of fast algorithms for solving problems involving polynomials and structured matrices.

We recall the main correlations between polynomial and matrix computations and present two recent results in this field: in particular, we show how Fourier methods can speed up the solution of a wide class of problems arising in queueing theory where certain Markov chains, defined by infinite block Toeplitz matrices in generalized Hessenberg form, must be solved. Moreover, we present a new method for the numerical factorization of polynomials based on a matrix generalization of Koenig's theorem. This method, that relies on the evaluation/interpolation technique at the Fourier points, reduces the problem of polynomial factorization to the computation of the LU decomposition of a banded Toeplitz matrix with its rows and columns suitably permuted. Numerical experiments that show the effectiveness of our algorithms are presented  相似文献   

11.
In this article we compute numerically the Green’s function of the half-plane Helmholtz operator with impedance boundary conditions. A compactly perturbed half-plane Helmholtz problem is used to motivate this calculation, by treating it through integral equation techniques. These require the knowledge of the calculated Green’s function, and lead to a boundary element discretization. The Green’s function is computed using the inverse Fourier operator of its spectral transform, applying an inverse FFT for the regular part, and removing the singularities analytically. Finally, some numerical results for the Green’s function and for a benchmark resonance problem are shown.  相似文献   

12.
The class of linearly-implicit parallel two-step peer W-methods has been designed recently for efficient numerical solutions of stiff ordinary differential equations. Those schemes allow for parallelism across the method, that is an important feature for implementation on modern computational devices. Most importantly, all stage values of those methods possess the same properties in terms of stability and accuracy of numerical integration. This property results in the fact that no order reduction occurs when they are applied to very stiff problems. In this paper, we develop parallel local and global error estimation schemes that allow the numerical solution to be computed for a user-supplied accuracy requirement in automatic mode. An algorithm of such global error control and other technical particulars are also discussed here. Numerical examples confirm efficiency of the presented error estimation and stepsize control algorithm on a number of test problems with known exact solutions, including nonstiff, stiff, very stiff and large-scale differential equations. A comparison with the well-known stiff solver RODAS is also shown.  相似文献   

13.
This article genralizes the fast Fourier transform algorithm to the computation of Fourier transforms on compact Lie groups. The basic technique uses factorization of group elements and Gel'fand-Tsetlin bases to simplify the computations, and may be extended to treat the computation of Fourier transforms of finitely supported distributions on the group. Similar transforms may be defined on homogeneous spaces; in that case we show how special function properties of spherical functions lead to more efficient algorithms. These results may all be viewed as generalizations of the fast Fourier transform algorithms on the circle, and of recent results about Fourier transforms on finite groups. Acknowledgements and Notes. This paper was written while the author was supported by the Max-Planck-Institut für Mathematik, Bonn, Germany.  相似文献   

14.
Summary We describe a quadrature method for the numerical solution of the logarithmic integral equation of the first kind arising from the single-layer approach to the Dirichlet problem for the two-dimensional Helmholtz equation in smooth domains. We develop an error analysis in a Sobolev space setting and prove fast convergence rates for smooth boundary data.  相似文献   

15.
In this paper we study advantages of numerical integration by quasi-consistent Nordsieck formulas. All quasi-consistent numerical methods possess at least one important property for practical use, which has not attracted attention yet, i.e. the global error of a quasi-consistent method has the same order as its local error. This means that the usual local error control will produce a numerical solution for the prescribed accuracy requirement if the principal term of the local error dominates strongly over remaining terms. In other words, the global error control can be as cheap as the local error control in the methods under discussion.  相似文献   

16.
First passage distributions of semi-Markov processes are of interest in fields such as reliability, survival analysis, and many others. Finding or computing first passage distributions is, in general, quite challenging. We take the approach of using characteristic functions (or Fourier transforms) and inverting them to numerically calculate the first passage distribution. Numerical inversion of characteristic functions can be unstable for a general probability measure. However, we show they can be quickly and accurately calculated using the inverse discrete Fourier transform for lattice distributions. Using the fast Fourier transform algorithm these computations can be extremely fast. In addition to the speed of this approach, we are able to prove a few useful bounds for the numerical inversion error of the characteristic functions. These error bounds rely on the existence of a first or second moment of the distribution, or on an eventual monotonicity condition. We demonstrate these techniques with two examples.  相似文献   

17.
In this work we present an adaptive strategy (based on an a posteriori error estimator) for a stabilized finite element method for the Stokes problem, with and without a reaction term. The hierarchical type estimator is based on the solution of local problems posed on appropriate finite dimensional spaces of bubble-like functions. An equivalence result between the norm of the finite element error and the estimator is given, where the dependence of the constants on the physics of the problem is explicited. Several numerical results confirming both the theoretical results and the good performance of the estimator are given.  相似文献   

18.
We present a method for computing the Hermite interpolation polynomial based on equally spaced nodes on the unit circle with an arbitrary number of derivatives in the case of algebraic and Laurent polynomials. It is an adaptation of the method of the Fast Fourier Transform (FFT) for this type of problems with the following characteristics: easy computation, small number of operations and easy implementation.In the second part of the paper we adapt the algorithm for computing the Hermite interpolation polynomial based on the nodes of the Tchebycheff polynomials and we also study Hermite trigonometric interpolation problems.  相似文献   

19.
Without doubt, the fast Fourier transform (FFT) belongs to the algorithms with large impact on science and engineering. By appropriate approximations, this scheme has been generalized for arbitrary spatial sampling points. This so called nonequispaced FFT is the core of the sequential NFFT3 library and we discuss its computational costs in detail. On the other hand, programmable graphics processing units have evolved into highly parallel, multithreaded, manycore processors with enormous computational capacity and very high memory bandwidth. By means of the so called Compute Unified Device Architecture (CUDA), we parallelized the nonequispaced FFT using the CUDA FFT library and a dedicated parallelization of the approximation scheme. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this article, an exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed for solving the nonlinear Schrödinger equation with wave operator. The numerical method is based on a Deuflhard-type exponential wave integrator for temporal integration and the Fourier pseudospectral method for spatial discretizations. The scheme is fully explicit and very efficient thanks to the fast Fourier transform. Numerical analysis of the proposed EWI-FP method is carried out and rigorous error estimates are established by means of the mathematical induction. Numerical results are reported to confirm the theoretical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号