首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Traditional studies in data envelopment analysis (DEA) view systems as a whole when measuring the efficiency, ignoring the operation of individual processes within a system. This paper builds a relational network DEA model, taking into account the interrelationship of the processes within the system, to measure the efficiency of the system and those of the processes at the same time. The system efficiency thus measured more properly represents the aggregate performance of the component processes. By introducing dummy processes, the original network system can be transformed into a series system where each stage in the series is of a parallel structure. Based on these series and parallel structures, the efficiency of the system is decomposed into the product of the efficiencies of the stages in the series and the inefficiency slack of each stage into the sum of the inefficiency slacks of its component processes connected in parallel. With efficiency decomposition, the process which causes the inefficient operation of the system can be identified for future improvement. An example of the non-life insurance industry in Taiwan illustrates the whole idea.  相似文献   

2.
Data envelopment analysis (DEA) is a useful tool of efficiency measurement for firms and organizations. Kao and Hwang (2008) take into account the series relationship of the two sub-processes in a two-stage production process, and the overall efficiency of the whole process is the product of the efficiencies of the two sub-processes. To find the largest efficiency of one sub-process while maintaining the maximum overall efficiency of the whole process, Kao and Hwang (2008) propose a solution procedure to accomplish this purpose. Nevertheless, one needs to know the overall efficiency of the whole process before calculating the sub-process efficiency. In this note, we propose a method that is able to find the sub-process and overall efficiencies simultaneously.  相似文献   

3.
Conventional data envelopment analysis (DEA) models are used to measure the technical and scale efficiencies of a system when it is considered as a whole unit. This paper extends the efficiency measurement to two-stage systems where each stage has one process and all the outputs from the first process become the inputs of the second. An input-oriented DEA model for the first process is developed to separate the process efficiency into the input technical and scale efficiencies, and an output-oriented model is developed for the second process to separate the process efficiency into the output technical and scale efficiencies. Combining the two models, the system efficiency is expressed as the product of the overall technical and scale efficiencies, where the overall technical and scale efficiencies are the products of the corresponding efficiencies of the two processes, respectively. The detailed decomposition allows the sources of inefficiency to be identified.  相似文献   

4.
Conventional two-stage data envelopment analysis (DEA) models measure the overall performance of a production system composed of two stages (processes) in a specified period of time, where variations in different periods are ignored. This paper takes the operations of individual periods into account to develop a multi-period two-stage DEA model, which is able to measure the overall and period efficiencies at the same time, with the former expressed as a weighted average of the latter. Since the efficiency of a two-stage system in a period is the product of the two process efficiencies, the overall efficiency of a decision making unit (DMU) in the specified period of time can be decomposed into the process efficiency of each period. Based on this decomposition, the sources of inefficiency in a DMU can be identified. The efficiencies measured from the model can also be used to calculate a common-weight global Malmquist productivity index (MPI) between two periods, in that the overall MPI is the product of the two process MPIs. The non-life insurance industry in Taiwan is used to verify the proposed model, and to explain why some companies performed unsatisfactorily in the specified period of time.  相似文献   

5.
Two-stage data envelopment analysis (TsDEA) models evaluate the performance of a set of production systems in which each system includes two operational stages. Taking into account the internal structures is commonly found in many situations such as seller-buyer supply chain, health care provision and environmental management. Contrary to conventional DEA models as a black-box structure, TsDEA provides further insight into sources of inefficiencies and a more informative basis for performance evaluation. In addition, ignoring the qualitative and imprecise data leads to distorted evaluations, both for the subunits and the system efficiency. We present the fuzzy input and output-oriented TsDEA models to calculate the global and pure technical efficiencies of a system and sub-processes when some data are fuzzy. To this end, we propose a possibilistic programming problem and then convert it into a deterministic interval programming problem using the α-level based method. The proposed method preserves the link between two stages in the sense that the total efficiency of the system is equal to the product of the efficiencies derived from two stages. In addition to the study of technical efficiency, this research includes two further contributions to the ancillary literature; firstly, we minutely discuss the efficiency decompositions to indicate the sources of inefficiency and secondly, we present a method for ranking the efficient units in a fuzzy environment. An empirical illustration is also utilised to show the applicability of the proposed technique.  相似文献   

6.
Conventional data envelopment analysis (DEA) models only consider the inputs supplied to the system and the outputs produced from the system in measuring efficiency, ignoring the operations of the internal processes. The results thus obtained sometimes are misleading. This paper discusses the efficiency measurement and decomposition of general multi-stage systems, where each stage consumes exogenous inputs and intermediate products (produced from the preceding stage) to produce exogenous outputs and intermediate products (for the succeeding stage to use). A relational model is developed to measure the system and stage efficiencies at the same time. By transforming the system into a series of parallel structures, the system efficiency is decomposed into the product of a modification of the stage efficiencies. Efficiency decomposition enables decision makers to identify the stages that cause the inefficiency of the system, and to effectively improve the performance of the system. An example of an electricity service system is used to explain the idea of efficiency decomposition.  相似文献   

7.
In the real world there are systems which are composed of independent production units. The conventional data envelopment analysis (DEA) model uses the sum of the respective inputs and outputs of all component units of a system to calculate its efficiency. This paper develops a parallel DEA model which takes the operation of individual components into account in calculating the efficiency of the system. A property owned by this parallel model is that the inefficiency slack of the system can be decomposed into the inefficiency slacks of its component units. This helps the decision maker identify inefficient components and make subsequent improvements. Another property is that the efficiency calculated from this model is smaller than that calculated from the conventional DEA model. Few systems will have perfect efficiency score; consequently, a stronger discrimination power is gained. In addition to theoretical derivations, a case of the national forests of Taiwan is used as an example to illustrate the whole idea.  相似文献   

8.
The purpose of this paper is to develop a new DEA with an interval efficiency. An original DEA model is to evaluate each DMU optimistically. There is another model called “Inverted DEA” to evaluate each DMU pessimistically. But, there are no relations essentially between DEA and inverted DEA. Thus, we formulate a DEA model with an interval efficiency which consists of efficiencies obtained from the optimistic and pessimistic viewpoints. Thus, two end points can construct an interval efficiency. With the same idea, we deal with the interval inefficiency model which is inverse to interval efficiency. Finally, we extend the proposed DEA model to interval data and fuzzy data.  相似文献   

9.
Data envelopment analysis (DEA) is a useful tool for efficiency measurement of firms and organizations. Many production systems in the real world are composed of two processes connected in series. Measuring the system efficiency without taking the operation of each process into consideration will obtain misleading results. Two-stage DEA models show the performance of individual processes, thus is more informative than the conventional one-stage models for making decisions. When input and output data are fuzzy numbers, the derived efficiencies become fuzzy as well. This paper proposes a method to rank the fuzzy efficiencies when the exact membership functions of the overall efficiencies derived from fuzzy two-stage model are unknown. By incorporating the fuzzy two-stage model with the fuzzy number ranking method, a pair of nonlinear program is formulated to rank the fuzzy overall efficiency scores of DMUs. Solving the pair of nonlinear programs determines the efficiency rankings. An example of the ranking of the 24 non-life assurance companies in Taiwan is illustrated to explain how the proposed method is applied.  相似文献   

10.
Two-stage cooperation model with input freely distributed among the stages   总被引:1,自引:0,他引:1  
Shared flow has been widely used in production scenarios where inputs and outputs are shared among various activities. In DEA literature, shared flow represents situations that DMUs are divided into different components that require common resources or produce goods or services obtained through collaboration among them. The objective of this paper is to offer an approach for studying shared flow in a two-stage production process in series, where shared inputs can be freely allocated among different stages. A product-form cooperative efficiency model is proposed to illustrate the overall efficiency of the DMU, and the relationship between the stages. First, we use a game-theory framework to decide the upper and lower bounds of the efficiencies of the stages in a non-cooperative context. A heuristic is suggested to transform the non-linear model into a parametric linear one, which is then used to solve the cooperative model. The model is justified by a numerical evaluation of bank performances.  相似文献   

11.
引入时间变量的数据包络分析模型   总被引:1,自引:0,他引:1  
考虑到实际中的生产过程大多数都是多阶段的生产过程,而传统的数据包络分析模型只能对单阶段的生产过程进行评价.传统的数据包络分析模型在应用中的局限性很大.本文是在传统数据包络分析模型的基础上,通过引入离散的时间变量来建立对整个多阶段生产过程进行评价的数据包络分析模型.  相似文献   

12.
In this paper, we investigate DEA with interval input-output data. First we show various extensions of efficiency and that 25 of them are essential. Second we formulate the efficiency test problems as mixed integer programming problems. We prove that 14 among 25 problems can be reduced to linear programming problems and that the other 11 efficiencies can be tested by solving a finite sequence of linear programming problems. Third, in order to obtain efficiency scores, we extend SBM model to interval input-output data. Fourth, to moderate a possible positive overassessment by DEA, we introduce the inverted DEA model with interval input-output data. Using efficiency and inefficiency scores, we propose a classification of DMUs. Finally, we apply the proposed approach to Japanese Bank Data and demonstrate its advantages.  相似文献   

13.
Data envelopment analysis (DEA) is a data-oriented approach for evaluating the performances of a set of peer entities called decision-making units (DMUs), whose performance is determined based on multiple measures. The traditional DEA, which is based on the concept of efficiency frontier (output frontier), determines the best efficiency score that can be assigned to each DMU. Based on these scores, DMUs are classified into DEA-efficient (optimistic efficient) or DEA-non-efficient (optimistic non-efficient) units, and the DEA-efficient DMUs determine the efficiency frontier. There is a comparable approach which uses the concept of inefficiency frontier (input frontier) for determining the worst relative efficiency score that can be assigned to each DMU. DMUs on the inefficiency frontier are specified as DEA-inefficient or pessimistic inefficient, and those that do not lie on the inefficient frontier, are declared to be DEA-non-inefficient or pessimistic non-inefficient. In this paper, we argue that both relative efficiencies should be considered simultaneously, and any approach that considers only one of them will be biased. For measuring the overall performance of the DMUs, we propose to integrate both efficiencies in the form of an interval, and we call the proposed DEA models for efficiency measurement the bounded DEA models. In this way, the efficiency interval provides the decision maker with all the possible values of efficiency, which reflect various perspectives. A numerical example is presented to illustrate the application of the proposed DEA models.  相似文献   

14.
The objective of the present paper is to propose a novel pair of data envelopment analysis (DEA) models for measurement of relative efficiencies of decision-making units (DMUs) in the presence of non-discretionary factors and imprecise data. Compared to traditional DEA, the proposed interval DEA approach measures the efficiency of each DMU relative to the inefficiency frontier, also called the input frontier, and is called the worst relative efficiency or pessimistic efficiency. On the other hand, in traditional DEA, the efficiency of each DMU is measured relative to the efficiency frontier and is called the best relative efficiency or optimistic efficiency. The pair of proposed interval DEA models takes into account the crisp, ordinal, and interval data, as well as non-discretionary factors, simultaneously for measurement of relative efficiencies of DMUs. Two numeric examples will be provided to illustrate the applicability of the interval DEA models.  相似文献   

15.
Additive efficiency decomposition in two-stage DEA   总被引:1,自引:0,他引:1  
Kao and Hwang (2008) [Kao, C., Hwang, S.-N., 2008. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research 185 (1), 418–429] develop a data envelopment analysis (DEA) approach for measuring efficiency of decision processes which can be divided into two stages. The first stage uses inputs to generate outputs which become the inputs to the second stage. The first stage outputs are referred to as intermediate measures. The second stage then uses these intermediate measures to produce outputs. Kao and Huang represent the efficiency of the overall process as the product of the efficiencies of the two stages. A major limitation of this model is its applicability to only constant returns to scale (CRS) situations. The current paper develops an additive efficiency decomposition approach wherein the overall efficiency is expressed as a (weighted) sum of the efficiencies of the individual stages. This approach can be applied under both CRS and variable returns to scale (VRS) assumptions. The case of Taiwanese non-life insurance companies is revisited using this newly developed approach.  相似文献   

16.
在传统的DEA模型中,最优相对效率模型是在不大于1的范围内研究决策单元的效率的,最差相对效率模型是在不小于1的范围内研究决策单元的效率,这两种模型在研究投影问题时,是在不同的范围内进行的,有一定的片面性.将在interval DEA模型中,研究决策单元的投影问题,该模型是在相同的约束域内研究最优和最差相对效率模型,得出的结论将更加全面,通过两个定理给出了非DEA有效的决策单元在DEA有效面上的投影表达式和非DEA无效的决策单元在DEA无效面上的投影表达式.同时,通过一个实例对决策单元在interval DEA模型中的投影结果与在传统的DEA模型的投影结果进行了比较,发现投影结果比传统模型得到的投影结果对实际的生产有更强的指导意义.  相似文献   

17.
In conventional DEA analysis, DMUs are generally treated as a black-box in the sense that internal structures are ignored, and the performance of a DMU is assumed to be a function of a set of chosen inputs and outputs. A significant body of work has been directed at problem settings where the DMU is characterized by a multistage process; supply chains and many manufacturing processes take this form. Recent DEA literature on serial processes has tended to concentrate on closed systems, that is, where the outputs from one stage become the inputs to the next stage, and where no other inputs enter the process at any intermediate stage. The current paper examines the more general problem of an open multistage process. Here, some outputs from a given stage may leave the system while others become inputs to the next stage. As well, new inputs can enter at any stage. We then extend the methodology to examine general network structures. We represent the overall efficiency of such a structure as an additive weighted average of the efficiencies of the individual components or stages that make up that structure. The model therefore allows one to evaluate not only the overall performance of the network, but as well represent how that performance decomposes into measures for the individual components of the network. We illustrate the model using two data sets.  相似文献   

18.
Efficiency is a relative measure because it can be measured within different ranges. The traditional data envelopment analysis (DEA) measures the efficiencies of decision-making units (DMUs) within the range of less than or equal to one. The corresponding efficiencies are referred to as the best relative efficiencies, which measure the best performances of DMUs and determine an efficiency frontier. If the efficiencies are measured within the range of greater than or equal to one, then the worst relative efficiencies can be used to measure the worst performances of DMUs and determine an inefficiency frontier. In this paper, the efficiencies of DMUs are measured within the range of an interval, whose upper bound is set to one and the lower bound is determined through introducing a virtual anti-ideal DMU, whose performance is definitely inferior to any DMUs. The efficiencies turn out to be all intervals and are thus referred to as interval efficiencies, which combine the best and the worst relative efficiencies in a reasonable manner to give an overall measurement and assessment of the performances of DMUs. The new DEA model with the upper and lower bounds on efficiencies is referred to as bounded DEA model, which can incorporate decision maker (DM) or assessor's preference information on input and output weights. A Hurwicz criterion approach is introduced and utilized to compare and rank the interval efficiencies of DMUs and a numerical example is examined using the proposed bounded DEA model to show its potential application and validity.  相似文献   

19.
This paper investigates cost, technical and allocative efficiencies for Brazilian banks in the recent period (2000–2007). We use Data Envelopment Analysis (DEA) to compute efficiency scores. Brazilian banks were found to have low levels of economic (cost) efficiency compared to banks in Europe and in the US. For the period with high macroeconomic volatility (2000–2002) the economic inefficiency in Brazilian banks can be attributed mainly to technical inefficiency rather than allocative inefficiency. State-owned banks are significantly more cost efficient than foreign, private domestic and private with foreign participation. There is no evidence of differences in economic efficiency due to type of activity and bank size. These results may provide some useful guidance for financial regulators and bank managers.  相似文献   

20.
从技术创新系统的内部过程出发,将制造业技术创新过程划分为技术研究与开发、技术应用与改造、环境污染治理三个阶段;然后运用虚拟系统法构建出制造业三阶段链式网络DEA交叉效率评价模型,并利用熵值法来确定交叉效率矩阵中各决策单元的权重,再通过加权求和法计算最终评价值;最后将此模型应用于福建省制造业技术创新效率的评价中。研究表明,福建省制造业各行业的技术创新效率,无论是整个技术创新系统,还是技术创新系统的各个子阶段,其交叉效率值普遍偏低,具有较大的提升空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号