首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article is concerned with the numerical approximations of population balance equations for modeling coupled batch preferential crystallization processes. The current setup consists of two batch crystallizers interconnected with two fines dissolution pipes. The crystallization of both enantiomers is assumed to take place in separate crystallizers after seeding with their corresponding crystals. The withdrawn fines are assumed to be dissolved in the dissolution unit after heating. crystallizer, the crystallizer temperature before entering to the opposite crystallizer. Two types of numerical methods are proposed for the simulation of this process. The first method uses high resolution finite volume schemes, while the second method is the so-called method of characteristics. On the one hand, the finite volume schemes which were derived for general system in divergence form, are computationally efficient, give desired accuracy on coarse grids, and are robust. On the other hand, the method of characteristics is in general a powerful tool for solving growth processes, has capability to overcome numerical diffusion and dispersion, gives highly resolved solutions, as well as being computationally efficient. A numerical test problem with both isothermal and non-isothermal conditions is considered here. The numerical results show clear advantages of the proposed schemes.  相似文献   

2.
In this article, we consider a new technique that allows us to overcome the well‐known restriction of Godunov's theorem. According to Godunov's theorem, a second‐order explicit monotone scheme does not exist. The techniques in the construction of high‐resolution schemes with monotone properties near the discontinuities of the solution lie in choosing of one of two high‐resolution numerical solutions computed on different stencils. The criterion for choosing the final solution is proposed. Results of numerical tests that compare with the exact solution and with the numerical solution obtained by the first‐order monotone scheme are presented. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 262–276, 2001  相似文献   

3.
Our study is dedicated to the probabilistic representation and numerical approximation of solutions of coupled systems of variational inequalities. We interpret the unique viscosity solution of a coupled system of variational inequalities as the solution of a one-dimensional constrained BSDE with jumps. This new representation allows for the introduction of a natural probabilistic numerical scheme for the resolution of these systems.  相似文献   

4.
A high order numerical method for the solution of model kinetic equations is proposed. The new method employs discontinuous Galerkin (DG) discretizations in the spatial and velocity variables and Runge-Kutta discretizations in the temporal variable. The method is implemented for the one-dimensional Bhatnagar-Gross-Krook equation. Convergence of the numerical solution and accuracy of the evaluation of macroparameters are studied for different orders of velocity discretization. Synthetic model problems are proposed and implemented to test accuracy of discretizations in the free molecular regime. The method is applied to the solution of the normal shock wave problem and the one-dimensional heat transfer problem.  相似文献   

5.
本文主要研究相场模拟中的Allen-Cahn模型,考虑一维Allen-Cahn方程紧差分方法的数值逼近.建立具有O(∫τ2+h4)精度的全离散紧差分格式,证明在合理的步长比和时间步长的约束下,其数值解满足离散最大化原则,在此基础上,研究了全离散格式的能量稳定性.最后给出数值算例.  相似文献   

6.
In this paper, we consider the one-dimensional inhomogeneous wave equation with particular focus on its spectral asymptotic properties and its numerical resolution. In the first part of the paper, we analyze the asymptotic nodal point distribution of high-frequency eigenfunctions, which, in turn, gives further information about the asymptotic behavior of eigenvalues and eigenfunctions. We then turn to the behavior of eigenfunctions in the high- and low-frequency limit. In the latter case, we derive a homogenization limit, whereas in the first we show that a sort of self-homogenization occurs at high frequencies. We also remark on the structure of the solution operator and its relation to desired properties of any numerical approximation. We subsequently shift our focus to the latter and present a Galerkin scheme based on a spectral integral representation of the propagator in combination with Gaussian quadrature in the spectral variable with a frequency-dependent measure. The proposed scheme yields accurate resolution of both high- and low-frequency components of the solution and as a result proves to be more accurate than available schemes at large time steps for both smooth and nonsmooth speeds of propagation.  相似文献   

7.
Summary. We construct a new third-order semi-discrete genuinely multidimensional central scheme for systems of conservation laws and related convection-diffusion equations. This construction is based on a multidimensional extension of the idea, introduced in [17] – the use of more precise information about the local speeds of propagation, and integration over nonuniform control volumes, which contain Riemann fans. As in the one-dimensional case, the small numerical dissipation, which is independent of , allows us to pass to a limit as . This results in a particularly simple genuinely multidimensional semi-discrete scheme. The high resolution of the proposed scheme is ensured by the new two-dimensional piecewise quadratic non-oscillatory reconstruction. First, we introduce a less dissipative modification of the reconstruction, proposed in [29]. Then, we generalize it for the computation of the two-dimensional numerical fluxes. Our scheme enjoys the main advantage of the Godunov-type central schemes –simplicity, namely it does not employ Riemann solvers and characteristic decomposition. This makes it a universal method, which can be easily implemented to a wide variety of problems. In this paper, the developed scheme is applied to the Euler equations of gas dynamics, a convection-diffusion equation with strongly degenerate diffusion, the incompressible Euler and Navier-Stokes equations. These numerical experiments demonstrate the desired accuracy and high resolution of our scheme. Received February 7, 2000 / Published online December 19, 2000  相似文献   

8.
Regularized equations describing hydrodynamic flows in the two-layer shallow water approximation are constructed. A conditionally stable finite-difference scheme based on the finitevolume method is proposed for the numerical solution of these equations. The scheme is tested using several well-known one-dimensional benchmark problems, including Riemann problems.  相似文献   

9.
本文提出了一种求解双曲型守恒律新的三阶中心差分格式,主要是引入了一种推广的三阶重构,并证明了这种重构在网格边界无振荡.所提的格式保持了中心差分格式简单的优点,不需用Riemann解算器,避免了进行特征解耦.数值试验结果表明本文格式是高精度、高分辨率的。  相似文献   

10.
The nonlinear Klein–Gordon equation is used to model many nonlinear phenomena. In this paper, we propose a numerical scheme to solve the one-dimensional nonlinear Klein–Gordon equation with quadratic and cubic nonlinearity. Our scheme uses the collocation points and approximates the solution using Thin Plate Splines (TPS) radial basis functions (RBF). The implementation of the method is simple as finite difference methods. The results of numerical experiments are presented, and are compared with analytical solutions to confirm the good accuracy of the presented scheme.  相似文献   

11.
人工神经网络近年来得到了快速发展,将此方法应用于数值求解偏微分方程是学者们关注的热点问题.相比于传统方法其具有应用范围广泛(即同一种模型可用于求解多种类型方程)、网格剖分条件要求低等优势,并且能够利用训练好的模型直接计算区域中任意点的数值.该文基于卷积神经网络模型,对传统有限体积法格式中的权重系数进行优化,以得到在粗粒...  相似文献   

12.
It is observed that the one-dimensional heat equation with certain nonlinear boundary conditions can be reformulated as a system of coupled Volterra integral equations. A product trapezoidal scheme is proposed for the numerical solution of this integral equation system, and some numerical experiments are given to compare the performances of this integral equation approach and the Crank-Nicholson method applied to the original initial-boundary value problem. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
A new high‐resolution indecomposable quasi‐characteristics scheme with monotone properties based on pyramidal stencil is considered. This scheme is based on consideration of two high‐resolution numerical schemes approximated governing equations on the pyramidal stencil with different kinds of dispersion terms approximation. Two numerical solutions obtained by these schemes are analyzed, and the final solution is chosen according to the special criterion to provide the monotone properties in regions where discontinuities of solutions could arise. This technique allows to construct the high‐order monotone solutions and keeps both the monotone properties and the high‐order approximation in regions with discontinuities of solutions. The selection criterion has a local character suitable for parallel computation. Application of the proposed technique to the solution of the time‐dependent 2D two‐phase flows through the porous media with the essentially heterogeneous properties is considered, and some numerical results are presented. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 44–55, 2002  相似文献   

14.
The CABARET scheme is used for the numerical solution of the one-dimensional shallow water equations over a rough bottom. The scheme involves conservative and flux variables, whose values at a new time level are calculated by applying the characteristic properties of the shallow water equations. The scheme is verified using a series of test and model problems.  相似文献   

15.
We consider a one-dimensional blood flow model suitable for larger arteries. It consists of a hyperbolic system of two coupled nonlinear equations. The model has already been successfully used in practice. Its numerical solution is usually achieved by means of an explicit Taylor–Galerkin scheme. We have proposed a different approach. The system can be transformed to characteristic directions emphasizing the physical nature of the problem. We solved this system by using an operator splitting on a moving grid.  相似文献   

16.
A class of one-dimensional time-fractional parabolic differential equations with delay effects of functional type in the time component is numerically investigated in this work. To that end, a compact difference scheme is constructed for the numerical solution of those equations based on the idea of separating the current state and the prehistory function. In these terms, the prehistory function is approximated by means of an appropriate interpolation–extrapolation operator. A discrete form of the fractional Gronwall inequality is employed to provide an optimal error estimate. The existence and uniqueness of the numerical solutions, the order of approximation error for the constructed scheme, the stability and the order of convergence are mathematically investigated in this work.  相似文献   

17.
Given any scheme in conservation form and an appropriate uniform grid for the numerical solution of the initial value problem for one-dimensional hyperbolic conservation laws we describe a multiresolution algorithm that approximates this numerical solution to a prescribed tolerance in an efficient manner. To do so we consider the grid-averages of the numerical solution for a hierarchy of nested diadic grids in which the given grid is the finest, and introduce an equivalent multiresolution representation. The multiresolution representation of the numerical solution consists of its grid-averages for the coarsest grid and the set of errors in predicting the grid-averages of each level of resolution in this hierarchy from those of the next coarser one. Once the numerical solution is resolved to our satisfaction in a certain locality of some grid, then the prediction errors there are small for this particular grid and all finer ones; this enables us to compress data by setting to zero small components of the representation which fall below a prescribed tolerance. Therefore instead of computing the time-evolution of the numerical solution on the given grid we compute the time-evolution of its compressed multiresolution representation. Algorithmically this amounts to computing the numerical fluxes of the given scheme at the points of the given grid by a hierarchical algorithm which starts with the computation of these numerical fluxes at the points of the coarsest grid and then proceeds through diadic refinements to the given grid. At each step of refinement we add the values of the numerical flux at the center of the coarser cells. The information in the multiresolution representation of the numerical solution is used to determine whether the solution is locally well-resolved. When this is the case we replace the costly exact value of the numerical flux with an accurate enough approximate value which is obtained by an inexpensive interpolation from the coarser grid. The computational efficiency of this multiresolution algorithm is proportional to the rate of data compression (for a prescribed level of tolerance) that can be achieved for the numerical solution of the given scheme.  相似文献   

18.
The combined CFD-PBE (population balance models) are computationally intensive requiring efficient numerical methods for solving practical problems. In this paper, a high order method is presented based on the least-squares method (LSM) for the solution of a spatial-dependent population balance equation which includes advective processes. Numerical experiments are performed in order to study the behavior of the proposed method for one-dimensional cases using model problems with analytical solutions.  相似文献   

19.
A new nonstandard Lagrangian method is constructed for the one-dimensional, transient convective transport equation with nonlinear reaction terms. An “exact” time-stepping scheme is developed with zero local truncation error with respect to time. The scheme is based on nonlocal treatment of nonlinear reactions, and when applied at each spatial grid point gives the new fully discrete numerical method. This approach leads to solutions free from the numerical instabilities that arise because of incorrect modeling of derivatives and nonlinear reaction terms. Algorithms are developed that preserve the properties of the numerical solution in the case of variable velocity fields by using nonuniform spatial grids. Effects of different interpolation techniques are examined and numerical results are presented to demonstrate the performance of the proposed new method. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 467–485, 1998  相似文献   

20.
《Applied Numerical Mathematics》2006,56(10-11):1397-1417
We prove the convergence of an explicit monotone finite difference scheme approximating an initial-boundary value problem for a spatially one-dimensional quasilinear strongly degenerate parabolic equation, which is supplied with two zero-flux boundary conditions. This problem arises in a model of sedimentation–consolidation processes in centrifuges and vessels with varying cross-sectional area. We formulate the definition of entropy solution of the model in the sense of Kružkov and prove the convergence of the scheme to the unique BV entropy solution of the problem. The scheme and the model are illustrated by numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号