首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
We implement in Matlab a Gauss-like cubature formula on bivariate domains whose boundary is a piecewise smooth Jordan curve (curvilinear polygons). The key tools are Green’s integral formula, together with the recent software package Chebfun to approximate the boundary curve close to machine precision by piecewise Chebyshev interpolation. Several tests are presented, including some comparisons of this new routine ChebfunGauss with the recent SplineGauss that approximates the boundary by splines.  相似文献   

2.
We have implemented in Matlab a Gauss-like cubature formula over arbitrary bivariate domains with a piecewise regular boundary, which is tracked by splines of maximum degree p (spline curvilinear polygons). The formula is exact for polynomials of degree at most 2n−1 using Ncmn2 nodes, 1≤cp, m being the total number of points given on the boundary. It does not need any decomposition of the domain, but relies directly on univariate Gauss-Legendre quadrature via Green’s integral formula. Several numerical tests are presented, including computation of standard as well as orthogonal moments over a nonstandard planar region.  相似文献   

3.
We have implemented in Matlab a Gauss-like cubature formula over convex, nonconvex or even multiply connected polygons. The formula is exact for polynomials of degree at most 2n-1 using Nmn 2 nodes, m being the number of sides that are not orthogonal to a given line, and not lying on it. It does not need any preprocessing like triangulation of the domain, but relies directly on univariate Gauss–Legendre quadrature via Green’s integral formula. Several numerical tests are presented. AMS subject classification (2000)  65F20  相似文献   

4.
We consider formulae of approximate integration over a dd-dimensional ball which use nn surface integrals along (d-1)(d-1)-dimensional spheres centered at the origin. For a class of functions defined on the ball with gradients satisfying an integral restriction, optimal formulae of this type are obtained.  相似文献   

5.
The two dimensional diffusion equation of the form is considered in this paper. We try a bi-cubic spline function of the form as its solution. The initial coefficients Ci,j(0) are computed simply by applying a collocation method; Ci,j = f(xiyj) where f(xy) = u(xy, 0) is the given initial condition. Then the coefficients Ci,j(t) are computed by X(t) = etQX(0) where X(t) = (C0,1C0,1C0,2, … , C0,NC1,0, … , CN,N) is a one dimensional array and the square matrix Q is derived from applying the Galerkin’s method to the diffusion equation. Note that this expression provides a solution that is not necessarily separable in space coordinates x, y. The results of sample calculations for a few example problems along with the calculation results of approximation errors for a problem with known analytical solution are included.  相似文献   

6.
A new local algorithm for bivariate interpolation of large sets of scattered and track data is presented. The method, which changes partially depending on the kind of data, is based on the partition of the interpolation domain in a suitable number of parallel strips, and, starting from these, on the construction for any data point of a square neighbourhood containing a convenient number of data points. Then, the well-known modified Shepard’s formula for surface interpolation is applied with some effective improvements. The proposed algorithm is very fast, owing to the optimal nearest neighbour searching, and achieves good accuracy. Computational cost and storage requirements are analyzed. Moreover, the efficiency and reliability of the algorithm are shown by several numerical tests, also performed by Renka’s algorithm for a comparison.  相似文献   

7.
In this paper, both analytical and semi-analytical solutions for Green’s functions are obtained by using the image method which can be seen as a special case of method of fundamental solutions (MFS). The image method is employed to solve the Green’s function for the annular, eccentric and half-plane Laplace problems. In addition, an analytical solution is derived for the fixed-free annular case. For the half-plane problem with a circular hole and an eccentric annulus, semi-analytical solutions are both obtained by using the image concept after determining the strengths of two frozen image points and a free constant by matching boundary conditions. It is found that two frozen images terminated at the two focuses in the bipolar coordinates for the problems with two circular boundaries. A boundary value problem of an eccentric annulus without sources is also considered. Error distribution is plotted after comparing with the analytical solution derived by Lebedev et al. using the bipolar coordinates. The optimal locations for the source distribution in the MFS are also examined by using the image concept. It is observed that we should locate singularities on the two focuses to obtain better results in the MFS. Besides, whether the free constant is required or not in the MFS is also studied. The results are compared well with the analytical solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号