首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study develops deteriorating items production inventory models with random machine breakdown and stochastic repair time. The model assumes the machine repair time is independent of the machine breakdown rate. The classical optimization technique is used to derive an optimal solution. A numerical example and sensitivity analysis are shown to illustrate the models. The stochastic repair models with uniformly distributed repair time tends to have a larger optimal total cost than the fixed repair time model, however the production up time is less than the fixed repair time model. Production and demand rate are the most sensitive parameters for the optimal production up time, and demand rate is the most sensitive parameter to the optimal total cost for the stochastic model with exponential distribution repair time.  相似文献   

2.
This paper addresses the dynamic lot sizing model with the assumption that the equipment is subject to stochastic breakdowns. We consider two different situations. First we assume that after a machine breakdown the setup is totally lost and new setup cost is incurred. Second we consider the situation in which the cost of resuming the production run after a failure might be substantially lower than the production setup cost. We show that under the first assumption the cost penalty for ignoring machine failures will be noticeably higher than in the classical lot sizing case with static demand. For the second case, two lot sizes per period are required, an ordinary lot size and a specific second (or resumption) lot size. If during the production of a future period demand the production quantity exceeds the second lot size, the production run will be resumed after a breakdown and terminated if the amount produced is less than this lot size. Considering the results of the static lot sizing case, one would expect a different policy. To find an optimum lot sizing decision for both cases a stochastic dynamic programming model is suggested.  相似文献   

3.
In this article, we develop an imperfect economic manufacturing quantity (EMQ) model for an unreliable production system subject to process deterioration, machine breakdown and repair and buffer stock. The basic model is developed under general process shift, machine breakdown and repair time distributions. We suggest a computational algorithm for determination of the optimal safety stock and production run time which minimize the expected cost per unit time in the steady state. For a numerical example, we illustrate the outcome of the proposed model and perform a sensitivity analysis with respect to the model-parameters which have direct influence on the optimal decisions.  相似文献   

4.
We consider a make-to-stock system served by an unreliable machine that produces one type of product, which is sold to customers at one of two possible prices depending on the inventory level at the time when a customer arrives (i.e., the decision point). The system manager must determine the production level and selling price at each decision point. We first show that the optimal production and pricing policy is a threshold control, which is characterized by three threshold parameters under both the long-run discounted profit and long-run average profit criteria. We then establish the structural relationships among the three threshold parameters that production is off when inventory is above the threshold, and that the optimal selling price should be low when inventory is above the threshold under the scenario where the machine is down or up. Finally we provide some numerical examples to illustrate the analytical results and gain additional insights.  相似文献   

5.
This paper deals with the single-item dynamic uncapacitated lot sizing problem with random demand. We propose a model based on the “static uncertainty” strategy of Bookbinder and Tan (1988). In contrast to these authors, we use exact expressions for the inventory costs and we apply a fillrate constraint. We present an exact solution method and modify several well-known dynamic lot sizing heuristics such that they can be applied for the case of dynamic stochastic demands. A numerical experiment shows that there are significant differences in the performance of the heuristics whereat the ranking of the heuristics is different from that reported for the case of deterministic demand.  相似文献   

6.
In this paper we consider a single item, discrete time, lot sizing situation where demand is random and its parameters (e.g., mean and standard deviation) can change with time. For the appealing criterion of minimizing expected total relevant costs per unit time until the moment of the next replenishment we develop two heuristic ways of selecting an appropriate augmentation quantity beyond the expected total demand through to the planned (deterministic) time of the next replenishment. The results of a set of numerical experiments show that augmentation is important, particularly when orders occur frequently (i.e., the fixed cost of a replenishment is low relative to the costs of carrying one period of demand in stock) and the coefficient of variability of demand is relatively low, but also under other specified circumstances. The heuristic procedures are also shown to perform very favourably against a hindsight, baseline (sS) policy, especially for larger levels of non-stationarity.  相似文献   

7.
This paper studies a economic lot sizing (ELS) problem with both upper and lower inventory bounds. Bounded ELS models address inventory control problems with time-varying inventory capacity and safety stock constraints. An O(n2) algorithm is found by using net cumulative demand (NCD) to measure the amount of replenishment requested to fulfill the cumulative demand till the end of the planning horizon. An O(n) algorithm is found for the special case, the bounded ELS problem with non-increasing marginal production cost.  相似文献   

8.
This paper presents a comprehensive mathematical model for integrated cell formation and inventory lot sizing problem. The proposed model seeks to minimize cell formation costs as well as the costs associated with production, while dynamic conditions, alternative routings, machine capacity limitation, operations sequences, cell size constraints, process deterioration, and machine breakdowns are also taken into account. The total cost consists of machine procurement, cell reconfiguration, preventive and corrective repairs, material handling (intra-cell and inter-cell), machine operation, part subcontracting, finished and unfinished parts inventory cost, and defective parts replacement costs. With respect to the multiple products, multiple process plans for each product and multiple routing alternatives for each process plan which are assumed in the proposed model, the model is combinatorial. Moreover, unreliability conditions are considered, because moving from “in-control” state to “out-of-control” state (process deterioration) and machine breakdowns make the model more practical and applicable. To conquer the breakdowns, preventive and corrective actions are adopted. Finally, a Particle Swarm Optimization (PSO)-based meta-heuristic is developed to overcome NP-completeness of the proposed model.  相似文献   

9.
Effects of imperfect products on lot sizing with work in process inventory   总被引:1,自引:0,他引:1  
The economic production quantity (EPQ) is one of the most widely known inventory control models that can be regarded as the generalized form of the Economic Order Quantity. However, the model is built on an unrealistic assumption that all the produced items need to be of perfect quality. Also, the introduction of work in process, WIP, as part of the inventory has been of lesser concern in developing inventory models. This paper attempts to develop the economic production quantity considering work in process inventory and manufacturing imperfect products that may be either reworkable or non-reworkable. The non-reworkable imperfect products are sold at a reduced price. This paper introduces a new model for this problem.  相似文献   

10.
Previous research on the joint vendor–buyer problem focused on the production shipment schedule in terms of the number and size of batches transferred between the two parties. It is a fact that transportation cost is a major part of the total operational cost. However, in most joint vendor–buyer models, the transportation cost is only considered implicitly as a part of fixed setup or ordering cost and thus is assumed to be independent of the size of the shipment. As such, the effect of the transportation cost is not adequately reflected in final planning decisions. There is a need for models involving transportation cost explicitly for better decision-making. In this study we analyze the vendor–buyer lot-sizing problem under equal-size shipment policy. We introduce the complete solution of the problem in an explicit and extended manner that has not existed in the literature. We incorporate transportation cost explicitly into the model and develop optimal solution procedures for solving the integrated models. All-unit-discount transportation cost structures with and without over declaration have been considered. Numerical examples are presented for illustrative purpose.  相似文献   

11.
Companies, especially those in e-business, are increasingly offering free shipping to buyers whose order sizes exceed the free shipping quantity. In this paper, given that the supplier offers free shipping, we determine the retailer’s optimal order lot size and the optimal retail price. We explicitly incorporate the supplier’s quantity discount, and transportation cost into the model. We analytically and numerically examine the impacts of free shipping, quantity discount and transportation cost on the retailer’s optimal lot sizing and pricing decisions. We find that free shipping can benefit the supplier, the retailer, and the end customers, and can effectively encourage the retailer to order more of the good, to the extent of ordering a few times of the optimal order lot size without free shipping. The order lot size will increase and the retail price will decrease if the supplier offers proper free shipping.  相似文献   

12.
This paper is concerned with determination of optimal run time for an economic production quantity (EPQ) model with scrap, rework, and stochastic machine breakdowns. In real life manufacturing systems, generation of defective items and random breakdown of production equipment are inevitable. In this study, a portion of the defective items is considered to be scrap, while the other is assumed to be repairable. Total production-inventory cost functions are derived respectively for both EPQ models with breakdown (no-resumption policy is adopted) and without breakdown taking place. These cost functions are integrated and the renewal reward theorem is used to cope with the variable cycle length. Theorems on conditional convexity of the integrated overall costs and bounds of the production run time are proposed and proved. We conclude that the optimal run time falls within the range of bounds and it can be pinpointed by the use of the bisection method based on the intermediate value theorem. Numerical example is provided to demonstrate its practical usages.  相似文献   

13.
We consider a lot sizing problem with setup times where the objective is to minimize the total inventory carrying cost only. The demand is dynamic over time and there is a single resource of limited capacity. We show that the approaches implemented in the literature for more general versions of the problem do not perform well in this case. We examine the Lagrangean relaxation (LR) of demand constraints in a strong reformulation of the problem. We then design a primal heuristic to generate upper bounds and combine it with the LR problem within a subgradient optimization procedure. We also develop a simple branch and bound heuristic to solve the problem. Computational results on test problems taken from the literature show that our relaxation procedure produces consistently better solutions than the previously developed heuristics in the literature.  相似文献   

14.
This paper proposes an integer linear programming formulation for a simultaneous lot sizing and scheduling problem in a job shop environment. Among others, one of our realistic assumptions is dealing with flexible machines which enable the production manager to change their working speeds. Then, a number of valid inequalities are developed based on problem structures. As the valid inequalities can help in reducing the non-optimal parts of the solution space, they are dealt with as some cutting planes. The proposed cutting planes are used to solve the problem in (i) cut-and-branch, and (ii) branch-and-cut approaches. The performance of each cutting plane is investigated with CPLEX 12.2 on a set of randomly-generated test data. Then, some performance criteria are identified and the proposed cutting planes are ranked by TOPSIS method.  相似文献   

15.
16.
This paper is concerned with optimization of production run time that takes stochastic breakdown and the reworking of defective items into consideration. In a real‐life manufacturing process, production of imperfect quality items as well as random breakdowns of production equipment is inevitable. All defective items produced are assumed to be repairable through a rework process right after the regular production stops in each cycle. This research starts with derivations of the cost functions for production systems with breakdown (no‐resumption policy is considered) and without breakdown taking place, respectively. Then cost functions of both cases are integrated. Theorems on conditional convexity of the overall cost function and bounds for optimal production run time are proposed and proved. This study concludes that although the optimal run time cannot be expressed in a closed form, it falls within the range of bounds. Hence, it can be pinpointed by the use of the bisection method based on the intermediate value theorem. A numerical example is provided to demonstrate its practical usages. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
《Applied Mathematical Modelling》2014,38(7-8):2290-2295
Chiu et al. (2010) [8] present the proof of convexity of the long-run average cost function E[TCU(t1)] for a manufacturing system with stochastic breakdown and rework process. This note not only demonstrates that E[TCU(t1)] is not convex but also adopts the rigorous methods of mathematics to develop the complete solution procedure to find the optimal solution for removing shortcomings of the above paper mentioned.  相似文献   

18.
This paper studies a new multi-product dynamic lot sizing problem, where the inventories of all products are replenished jointly with the same quantity whenever a production occurs. Such problems may occur in poultry and some chemical industries. We first introduce the general problem that allows for demand rejection with lost sales cost, and prove that the problem is NP-hard. Then we study a special case where all demands have to be satisfied immediately, and show that it can be solved in polynomial time. Finally, we develop two heuristic algorithms for the general problem. Through computational experiments, we demonstrate the effectiveness of the heuristics and investigate some insights related to the decision of lost sales.  相似文献   

19.
Conventional approaches for solving the production lot size problems are by using the differential calculus on the long-run average production-inventory cost function with the need to prove optimality first. This note presents a simple algebraic method to replace the use of calculus for determining the optimal lot size. This study refers to the approach used by Grubbström and Erdem [Grubbström, R.W., Erdem, A., 1999. The EOQ with backlogging derived without derivatives, International Journal of Production Economics 59, 529–530] and extends it to the model examined by Chiu and Chiu [Chiu, S.W., Chiu, Y.-S.P., 2006. Mathematical modelling for production system with backlogging and failure in repair. Journal of Scientific and Industrial Research 65(6), 499–506]. This paper demonstrates that the lot size solution and the optimal production-inventory cost of an imperfect EMQ model can be derived without derivatives. As a result, the practitioners or students with little or no knowledge of calculus may be able to manage or understand with ease the realistic production systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号