首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical methods are proposed for the numerical solution of a system of reaction-diffusion equations, which model chemical wave propagation. The reaction terms in this system of partial differential equations contain nonlinear expressions. Nevertheless, it is seen that the numerical solution is obtained by solving a linear algebraic system at each time step, as opposed to solving a nonlinear algebraic system, which is often required when integrating nonlinear partial differential equations. The development of each numerical method is made in the light of experience gained in solving the system of ordinary differential equations, which model the well-stirred analogue of the chemical system. The first-order numerical methods proposed for the solution of this initialvalue problem are characterized to be implicit. However, in each case it is seen that the numerical solution is obtained explicitly. In a series of numerical experiments, in which the ordinary differential equations are solved first of all, it is seen that the proposed methods have superior stability properties to those of the well-known, first-order, Euler method to which they are compared. Incorporating the proposed methods into the numerical solution of the partial differential equations is seen to lead to two economical and reliable methods, one sequential and one parallel, for solving the travelling-wave problem. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Many systems of ordinary differential equations are quadratic: the derivative can be expressed as a quadratic function of the dependent variable. We demonstrate that this feature can be exploited in the numerical solution by Runge-Kutta methods, since the quadratic structure serves to decrease the number of order conditions. We discuss issues related to construction design and implementation and present a number of new methods of Runge-Kutta and Runge-Kutta-Nyström type that display superior behaviour when applied to quadratic ordinary differential equations.  相似文献   

3.
It is well known that the numerical solution of stiff stochastic ordinary differential equations leads to a step size reduction when explicit methods are used. This has led to a plethora of implicit or semi-implicit methods with a wide variety of stability properties. However, for stiff stochastic problems in which the eigenvalues of a drift term lie near the negative real axis, such as those arising from stochastic partial differential equations, explicit methods with extended stability regions can be very effective. In the present paper our aim is to derive explicit Runge–Kutta schemes for non-commutative Stratonovich stochastic differential equations, which are of weak order two and which have large stability regions. This will be achieved by the use of a technique in Chebyshev methods for ordinary differential equations.  相似文献   

4.
In some earlier publications it has been shown that the solutions of the boundary integral equations for some mixed boundary value problems for the Helmholtz equation permit integral representations in terms of solutions of associated complicated singular algebraic ordinary differential equations. The solutions of these differential equations, however, are required to be known on some infinite interval on the real line, which is unsatisfactory from a practical point of view. In this paper, for the example of one specific boundary integral equation, the relevant solutions of the associated differential equation are expressed by integrals which contain only one unknown generalized function, the support of this generalized function is no longer unbounded but a compact subset of the real line. This generalized function is a distributional solution of the homogeneous boundary integral equation. By this null space distribution the boundary integral equation can be solved for arbitrary right-hand sides, this solution method can be considered of being analogous to the method of variation of parameters in the theory of ordinary differential equations. The nature of the singularities of the null space distribution is worked out and it is shown that the null space distribution itself can be expressed by solutions of the associated ordinary differential equation.  相似文献   

5.
We use Magnus methods to compute the Evans function for spectral problems as arise when determining the linear stability of travelling wave solutions to reaction-diffusion and related partial differential equations. In a typical application scenario, we need to repeatedly sample the solution to a system of linear non-autonomous ordinary differential equations for different values of one or more parameters as we detect and locate the zeros of the Evans function in the right half of the complex plane. In this situation, a substantial portion of the computational effort—the numerical evaluation of the iterated integrals which appear in the Magnus series—can be performed independent of the parameters and hence needs to be done only once. More importantly, for any given tolerance Magnus integrators possess lower bounds on the step size which are uniform across large regions of parameter space and which can be estimated a priori. We demonstrate, analytically as well as through numerical experiment, that these features render Magnus integrators extremely robust and, depending on the regime of interest, efficient in comparison with standard ODE solvers. AMS subject classification (2000) 65F20  相似文献   

6.
We present a survey of recent developments in the applications of the scaling concept to numerical analysis. In addition, we report on some relevant topics not covered in existing surveys. Therefore, the present work updates and complements the existing surveys on the subject concerned.Applications of the scaling concept are useful in the numerical treatment of both ordinary and partial differential problems. Applications to boundary-value problems governed by ordinary differential equations are mainly related to their transformation into initial-value problems. Within this context, special emphasis is placed on systems of governing equations, eigenvalue, and free boundary-value problems. An error analysis for a truncated boundary formulation of the Blasius problem is also reported. As far as initial-value problems governed by ordinary differential equations are concerned, we discuss the development of adaptive mesh methods. Applications to partial differential problems considered herein are related to the construction of finite-difference schemes for conservations laws, the solution structure of the Riemann problem, rescaling schemes and adaptive schemes for blow-up problems.In writing this paper, our aim was to promote further and more important numerical applications of the scaling concept. Meanwhile, the pertinent bibliography is highlighted and is available on internet as the BIB file sc-gita.bib from the anonymous ftp area at the URL ftp://dipmat.unime.it/pub/papers/fazio/surveys.  相似文献   

7.
We consider the numerical pricing of American options under Heston’s stochastic volatility model. The price is given by a linear complementarity problem with a two-dimensional parabolic partial differential operator. We propose operator splitting methods for performing time stepping after a finite difference space discretization. The idea is to decouple the treatment of the early exercise constraint and the solution of the system of linear equations into separate fractional time steps. With this approach an efficient numerical method can be chosen for solving the system of linear equations in the first fractional step before making a simple update to satisfy the early exercise constraint. Our analysis suggests that the Crank–Nicolson method and the operator splitting method based on it have the same asymptotic order of accuracy. The numerical experiments show that the operator splitting methods have comparable discretization errors. They also demonstrate the efficiency of the operator splitting methods when a multigrid method is used for solving the systems of linear equations.  相似文献   

8.
We consider linear multi-step methods for stochastic ordinary differential equations and study their convergence properties for problems with small noise or additive noise. We present schemes where the drift part is approximated by well-known methods for deterministic ordinary differential equations. In previous work, we considered Maruyama-type schemes, where only the increments of the driving Wiener process are used to discretize the diffusion part. Here, we suggest the improvement of the discretization of the diffusion part by also taking into account mixed classical-stochastic integrals. We show that the relation of the applied step sizes to the smallness of the noise is essential in deciding whether the new methods are worthwhile. Simulation results illustrate the theoretical findings.  相似文献   

9.
In this paper, we investigate the positivity property for a class of 2-stage explicit Runge-Kutta (RK2) methods of order two when applied to the numerical solution of special nonlinear initial value problems (IVPs) for ordinary differential equations (ODEs). We also pay particular attention to monotonicity property. We obtain new results for positivity which are important in practical applications. We provide some numerical examples to illustrate our results.  相似文献   

10.
The singular perturbation mathematical model plays an important role in modelling fluid processes which arise in applied mechanics. We have either, the stiff system of initial value problems or convection-diffusion problems. When conventional numerical methods are used to obtain the solution, the stepsize must be limited to small values. Any attempt to use a larger step-size results in the production of nonphysical oscillations in the solution.In this paper we have constructed an adaptive spline function to solve initial and boundary value problems of ordinary and partial differential equations. The numerical methods based on the spline relations when applied to the test models produce oscillation free solutions. The numerical results are presented and discussed.  相似文献   

11.
We develop a new approach to the theory and numerical solution of a class of linear and nonlinear Fredholm equations. These equations, which have semidegenerate kernels, are shown to be equivalent to two-point boundary-value problems for a system of ordinary differential equations. Applications of numerical methods for this class of problems allows us to develop a new class of numerical algorithms for the original integral equation. The scope of the paper is primarily theoretical; developing the necessary Fredholm theory and giving comparisons with related methods. For convolution equations, the theory is related to that of boundary-value problems in an appropriate Hilbert space. We believe that the results here have independent interest. In the last section, our methods are extended to certain classes of integrodifferential equations.  相似文献   

12.
Summary We present a new method for the numerical solution of bifurcation problems for ordinary differential equations. It is based on a modification of the classical Ljapunov-Schmidt-theory. We transform the problem of determining the nontrivial branch bifurcating from the trivial solution into the problem of solving regular nonlinear boundary value problems, which can be treated numerically by standard methods (multiple shooting, difference methods).
  相似文献   

13.
The focus of this work is on numerical solutions to two-factor option pricing partial differential equations with variable interest rates. Two interest rate models, the Vasicek model and the Cox–Ingersoll–Ross model (CIR), are considered. Emphasis is placed on the definition and implementation of boundary conditions for different portfolio models, and on appropriate truncation of the computational domain. An exact solution to the Vasicek model and an exact solution for the price of bonds convertible to stock at expiration under a stochastic interest rate are derived. The exact solutions are used to evaluate the accuracy of the numerical simulation schemes. For the numerical simulations the pricing solution is analyzed as the market completeness decreases from the ideal complete level to one with higher volatility of the interest rate and a slower mean-reverting environment. Simulations indicate that the CIR model yields more reasonable results than the Vasicek model in a less complete market.  相似文献   

14.
Fixed point continuation methods and shooting methods are combined to produce an effective numerical procedure for solving boundary value problems for nonlinear ordinary differential equations. Typical numerical solution schemes involve an iteration procedure. Continuation methods systematically generate good initial guesses and, when combined with a shooting method and an appropriate update procedure, give systematic means for the numerical solution of nonlinear boundary value problems. This paper concentrates on problems of Bernstein type, which arise naturally in the calculus of variations and in steady-state heat conduction.  相似文献   

15.
We are interested in models for vehicular traffic flow based on partial differential equations and their extensions to networks of roads. In this paper, we simplify a fluidodynamic traffic model and derive a new traffic flow model based on ordinary differential equations (ODEs). This is obtained by spatial discretization of an averaged density evolution and a suitable approximation of the coupling conditions at junctions of the network. We show that the new model inherits similar features of the full model, e.g., traffic jam propagation. We consider optimal control problems controlled by the ODE model and derive the optimality system. We present numerical results on the simulation and optimization of traffic flow in sample networks.  相似文献   

16.

This paper gives an introduction to nonstandard finite difference methods useful for the construction of discrete models of differential equations when numerical solutions are required. While the general rules for such schemes are not precisely known at the present time, several important criterion have been found. We provide an explanation of their significance and apply them to several model ordinary and partial differential equations. The paper ends with a discussion of several outstanding problems in this area and other related issues.  相似文献   

17.
The treatment of the stochastic linear quadratic optimal control problem with finite time horizon requires the solution of stochastic differential Riccati equations. We propose efficient numerical methods, which exploit the particular structure and can be applied for large‐scale systems. They are based on numerical methods for ordinary differential equations such as Rosenbrock methods, backward differentiation formulas, and splitting methods. The performance of our approach is tested in numerical experiments.  相似文献   

18.
We present a MATLAB package for boundary value problems in ordinary differential equations. Our aim is the efficient numerical solution of systems of ODEs with a singularity of the first kind, but the solver can also be used for regular problems. The basic solution is computed using collocation methods and a new, efficient estimate of the global error is used for adaptive mesh selection. Here, we analyze some of the numerical aspects relevant for the implementation, describe measures to increase the efficiency of the code and compare its performance with the performance of established standard codes for boundary value problems.  相似文献   

19.
The purpose of this paper is to report on the application of multipoint methods to the solution of two-point boundary-value problems with special reference to the continuation technique of Roberts and Shipman. The power of the multipoint approach to solve sensitive two-point boundary-value problems with linear and nonlinear ordinary differential equations is exhibited. Practical numerical experience with the method is given.Since employment of the multipoint method requires some judgment on the part of the user, several important questions are raised and resolved. These include the questions of how many multipoints to select, where to specify the multipoints in the interval, and how to assign initial values to the multipoints.Three sensitive numerical examples, which cannot be solved by conventional shooting methods, are solved by the multipoint method and continuation. The examples include (1) a system of two linear, ordinary differential equations with a boundary condition at infinity, (2) a system of five nonlinear ordinary differential equations, and (3) a system of four linear ordinary equations, which isstiff.The principal results are that multipoint methods applied to two-point boundary-value problems (a) permit continuation to be used over a larger interval than the two-point boundary-value technique, (b) permit continuation to be made with larger interval extensions, (c) converge in fewer iterations than the two-point boundary-value methods, and (d) solve problems that two-point boundary-value methods cannot solve.  相似文献   

20.
We aim at demonstrating a novel theorem on the derivation of energy integrals for linear second-order ordinary differential equations with variable coefficients. Namely, in this context, we will present a possible and consistent method to overcome the traditional difficulty of deriving energy integrals for Lagrangian functions that explicitly exhibit the independent variable. Our theorem is such that it appropriately governs the arbitrariness of the variable coefficients in order to have energy integrals ensured. In view of the theoretical framework in which the theorem will be embedded, we will also demonstrate that it can be applied as a mathematical method to solve linear second-order ordinary differential equations with variable coefficients. These results are expected to have a generalized fundamental character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号