首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
《中国化学会会志》2018,65(6):714-725
A novel dual two‐dimensional (2D) high‐performance liquid chromatography (LC) setup coupled online to an ultraviolet (UV) detector, fluorescence (FL) detector, and ion‐trap mass spectrometer (MS) has been developed for determining the amino acid sequence of short peptides using a novel bottom‐up strategy. Short peptides were electrothermally hydrolyzed to shorter peptides and amino acid enantiomers. The first 2D LC‐UV and FL system was used to separate and identify the produced parent and daughter short peptides and amino acid isomers and enantiomers in the hydrolysate; the second 2D LC‐MS was used to identify the presence of cysteine and obtain the molecular mass signals and N‐terminal peptide fragment ion signals for parent and daughter short peptides. The identified amino acid enantiomers are used to form any possible short peptides by permutation and combination in an order from dipeptide to a tripeptide, to a tetrapeptide, and to even higher short peptides. The correct short peptides are confirmed by comparing the molecular weights of the constituent amino acid enantiomers and the molecular weights of identified short peptides together, with the characteristic N‐terminal peptide fragment ion signals. The amino acid sequence of the dipeptide ester aspartame and the tripeptide glutathione was successfully determined by this method.  相似文献   

2.
To detect and identify the electron spin resonance (ESR) silent forms of the α‐(4‐pyridyl‐1‐oxide)‐N‐tert‐butylnitrone (4‐POBN) radical adducts, an electrochemical detector (ECD) was employed as a reactor in the HPLC‐ECD‐UV absorption detector‐ESR‐MS (HPLC‐ECD‐UV‐ESR‐MS). The ECD was employed to regenerate the radical forms from the reduced forms. The reduced forms of the 4‐POBN/pentyl radical adducts were analyzed using the HPLC‐ECD‐UV‐ESR‐MS. On addition of the ECD applied potential of +0.3 V, a peak appeared on the ESR trace of the HPLC‐ECD‐UV‐ESR‐MS analyses, indicating that the radical forms are regenerated from the reduced forms. The HPLC‐ECD‐UV‐ESR‐MS analyses were also performed for the reaction mixtures of phenylhydrazine with CuCl2. Two peaks (peaks I and II) were detected on the UV trace (300 nm) of the HPLC‐ECD‐UV‐ESR‐MS. The mass spectra showed that the peak I and peak II compounds are radical and reduced forms of the 4‐POBN/phenyl radical adducts under the ECD applied potential of 0.0 V. Peak I was only detected on the ESR trace under the ECD applied potential of 0.0 V. In addition to peak I, peak II appeared on the ESR trace under the ECD applied potential of +0.3 V, indicating that the reduced forms are oxidized to the corresponding radical forms.  相似文献   

3.
To overcome challenges in HPLC impurity analysis of pharmaceuticals, we developed an automated online multi‐heartcutting 2D HPLC system with hyphenated UV‐charged aerosol MS detection. The first dimension has a primary column and the second dimension has six orthogonal columns to enhance flexibility and selectivity. The two dimensions were interfaced by a pair of switching valves equipped with six trapping loops that allow multi‐heartcutting of peaks of interest in the first dimension and also allow “peak parking.” The hyphenated UV‐charged aerosol MS detection provides comprehensive detection for compounds with and without UV chromophores, organics, and inorganics. It also provides structural information for impurity identification. A hidden degradation product that co‐eluted with the drug main peak was revealed by RP × RP separation and thus enabled the stability‐indicating method development. A poorly retained polar component with no UV chromophores was analyzed by RP × hydrophilic interaction liquid chromatography separation with charged aerosol detection. Furthermore, using this system, the structures of low‐level impurities separated by a method using nonvolatile phosphate buffer were identified and tracked by MS in the second dimension.  相似文献   

4.
A new labeling method compatible with both laser-induced fluorescence (LIF) and MS detection for enkephalins, which uses naphthalene-2,3-dicarboxaldehyde (NDA) and a new nucleophilic agent (N,N-dimethylaminoethanethiol) is described. When the derivative is separated via reverse phase HPLC and detected via MS, two different peaks with similar exact mass but different fluorescence and fragmentation properties are obtained. To interpret these results, molecular modeling and H/D exchange mass spectrometry studies were investigated to test the hypothesis that the peak obtained by LC/LIF/MS analysis depends on the site of protonation of the labeled enkephalins. The peptides labeled with NDA and N,N-dimethylaminoethanethiol were separated on a reverse phase C18 column with a gradient of aqueous 0.1% formic acid and acetonitrile. In mass spectrometry, two peaks are observed with the same exact mass for each molecule while only one peak is detected using fluorescence. Tandem mass spectrometry experiments of ion m/z 809.5 were performed on each chromatographic peak; the first peak (which is not observed by LIF detection) gives a fragment corresponding to the loss of the aminothiol side chain while no fragmentation is observed on the second peak, which was detected by fluorescence. The hypothesis is that each peak represents the labeled enkephalin with different sites of protonation. According to this hypothesis, three fundamental conformations that were closed to the unlabeled leucine-enkephalin were obtained by molecular modeling: a beta-turn like conformation with two hydrogen bonds, a 3(10)-helix with an H bond, and finally, the extended form without any intramolecular interactions. H/D exchange mass spectrometry experiments with D(2)O and d(2-)formic acid as eluent was used to determine which conformation is involved in each peak.  相似文献   

5.
The relative quantification and identification of proteins by matrix‐assisted laser desorption ionization time‐of‐flight MS is very important in /MS is very important in protein research and is usually conducted separately. Chemical N‐terminal derivatization with 4‐sulphophenyl isothiocyanate facilitates de novo sequencing analysis and accurate protein identification, while 18O labeling is simple, specific and widely applicable among the isotopic labeling methods used for relative quantification. In the present study, a method combining 4‐sulphophenyl isothiocyanate derivatization with 18O isotopic labeling was established to identify and quantify proteins simultaneously in one experiment. Reaction conditions were first optimized using a standard peptide (fibrin peptide) and tryptic peptides from the model protein (bovine serum albumin). Under the optimized conditions, these two independent labeling steps show good compatibility, and the linear relativity of quantification within the ten times dynamic range was stable as revealed by correlation coefficient analysis (R2 value = 0.998); moreover, precursor peaks in MS/MS spectrum could provide accurate quantitative information, which is usually acquired from MS spectrum, enabling protein identification and quantification in a single MS/MS spectrum. Next, this method was applied to native peptides isolated from spider venoms. As expected, the de novo sequencing results of each peptide matched with the known sequence precisely, and the measured quantitative ratio of each peptide corresponded well with the theoretical ratio. Finally, complex protein mixtures of spider venoms from male and female species with unknown genome information were analyzed. Differentially expressed proteins were successfully identified, and their quantitative information was also accessed. Taken together, this protein identification and quantification method is simple, reliable and efficient, which has a good potential in the exploration of peptides/proteins from species with unknown genome. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
We report the first use of CZE for absolute characterization of host cell proteins (HCPs) in recombinant human monoclonal antibodies. An electrokinetically pumped nanoelectrospray interface was used to couple CZE with a tandem mass spectrometer. Three isotopic‐labeled peptides (LSFDKDAMVAR, VDIVENQAMDTR, and LVSDEMVVELIEK) were synthesized by direct incorporation of an isotope‐labeled lysine or arginine. The heavy‐labeled peptides were spiked in the HCP digests at known concentrations. After CZE‐ESI‐MS/MS analysis, the peaks of native and isotopic‐labeled peptides were extracted with mass tolerance ≤ 5 ppm from the electropherograms, and the ratios of peak area between native and isotopic‐labeled peptides pairs were calculated. Calibration curves (the ratios of peak area versus spiked peptide amount) with R2 values of 0.999, 0.997, and 0.999 were obtained for the three HCP peptides, and the absolute amounts of the three proteins present were determined to be at the picomole level in a 20 μg sample of digested HCPs. The target proteins were present at the 7–30 ppt level in the purified HCP samples.  相似文献   

7.
Tsukagoshi K  Sawanoi K  Nakajima R 《Talanta》2006,68(4):1071-1075
We developed a capillary electrophoretic system incorporating an ultra-violet absorption (UV)/chemiluminescence (CL) dual detector, taking advantage of the CL reaction of luminol-hydrogen peroxide and the batch-type CL detection cell. UV detection was carried out using the on-capillary method while CL detection was performed using the end-capillary method. Examination of isoluminol isothiocyanate (ILITC) as a model sample revealed two main peaks with UV detection and one main peak with CL detection. The first peak in the UV detection data corresponded to the main peak in the CL detection data. We then determined that the ILITC sample included natural ILITC as well as an impurity that had absorption behavior but did not have CL properties and labeling ability. Furthermore, the components of a mixture containing glycine, glycylglycine and glycylglycylglycine, all labeled with ILITC, were well separated and detected using the present system. The present system easily, rapidly, and simultaneously produces useful information due to the presence of both UV and CL detectors.  相似文献   

8.
The modification of mitochondrial proteins enriched from rat forebrain by the major lipid peroxidation product 4-hydroxy-2-nonenal (HNE) was investigated using high performance liquid chromatography (HPLC) and tandem mass spectrometry. Subcellular fractionation in conjunction with a 'shotgun-based' approach that involved both conventional data-dependent and neutral loss (NL)-driven MS(3) data acquisition on a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer (LTQ-FT) was utilized. Using a relatively rapid linear HPLC gradient (1 h) for complex mixture analysis, 24 sites of HNE modification on 15 unique proteins were identified which corresponded exclusively to Michael adduct formation on histidine residues. Since a number of HNE-modified peptides produced a predominant HNE NL fragment-ion signal upon collision-induced dissociation (CID), NL-driven MS(3) data-dependent acquisition was a valuable method to enhance fragmentation information for these particular modified peptides. Of the 24 HNE modification sites identified, approximately 25% were determined from the MS(3) spectra alone. We envision the reported methodology as an efficient screening approach for HNE modification site selectivity that could ultimately provide a foundation for the development of targeted schemes for the characterization of in vivo HNE-protein adducts.  相似文献   

9.
For GC-MS analysis of delta-9-tetrahydrocannabinol (delta-9-THC), perfluoroacid anhydrides in combination with perfluoroalcohols are commonly used for derivatization. This reagent mixture is preferred because it allows simultaneous derivatization of delta-9-THC and its acid metabolite, 11-nor-delta-9-THC-9-carboxylic acid present in biological samples. When delta-9-THC was derivatized by trifluoroacetic anhydride/hexafluoroisopropanol (TFAA/HFIPOH) and analyzed by GC-MS using full scan mode (50-550 amu), two peaks (P1 and P2) with an identical molecular mass of 410 amu were observed. On the basis of the total ion chromatogram (TIC), P1 with a shorter retention time (RT) was the major peak (TIC 84%). To identify the peaks, delta-8-THC was also tested under the same conditions. The RT and spectra of the major peak (TIC 95%) were identical with that of P1 for delta-9-THC. A minor peak (5%) present also correlated well with the latter peak (P2) for the delta-9-THC derivative. The fragmentation pathway of P1 was primarily demethylation followed by retro Diels-Alder fragmentation (M - 15-68, base peak 100%) indicating P1 as a delta-8-THC-trifluoroacetyl compound. This indicated that delta-9-THC isomerized to delta-8-THC during derivatization with TFAA/HFIPOH. Similar results were also observed when delta-9-THC was derivatized with pentafluoropropionic anhydride/pentafluoropropanol or heptafluorobutyric anhydride/heptafluorobutanol. No isomerization was observed when chloroform was used in derivatization with TFAA. In this reaction, the peaks of delta-8-THC-TFA and delta-9-THC-TFA had retention times and mass spectra matching with P1 and P2, respectively. Because of isomerization, perfluoroacid anhydrides/perfluoroalcohols are not suitable derivatizing agents for analysis of delta-9-THC; whereas the TFAA in chloroform is suitable for the analysis.  相似文献   

10.
The number and wide dynamic range of components found in biological matrixes present several challenges for global proteomics. In this perspective, we will examine the potential of zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) separations coupled with Fourier-transform ion cyclotron resonance (FT-ICR) and time-of-flight (TOF) mass spectrometry (MS) for the analysis of complex mixtures. We describe and further develop previous reports on the space occupied by peptides, to calculate the theoretical peak capacity available to each separations-mass spectrometry method examined. Briefly, the peak capacity attainable by each of the mass analyzers was determined from the mass resolving power (RP) and the m/z space occupied by peptides considered from the mass distribution of tryptic peptides from National Center for Biotechnology Information's (NCBI's) nonredundant database. Our results indicate that reverse-phase-nanoHPLC (RP-nHPLC) separation coupled with FT-ICR MS offers an order of magnitude improvement in peak capacity over RP-nHPLC separation coupled with TOF MS. The addition of an orthogonal separation method, strong cation exchange (SCX), for 2D LC-MS demonstrates an additional 10-fold improvement in peak capacity over 1D LC-MS methods. Peak capacity calculations for 0D LC, two different 1D RP-HPLC methods, and 2D LC (with various numbers of SCX fractions) for both RP-HPLC methods coupled to FT-ICR and TOF MS are examined in detail. Peak capacity production rates, which take into account the total analysis time, are also considered for each of the methods. Furthermore, the significance of the space occupied by peptides is discussed.  相似文献   

11.
An approach based on the consecutive use of nanoHPLC-ICP collision cell MS and nanoHPLC-electrospray MS was proposed for the analysis of water-soluble selenium-containing proteins in selenium-rich yeast after their separation by 2D gel electrophoresis (GE). An ultrasonic probe was employed for fast protein extraction avoiding sample heating and thus reducing the risk of protein degradation. The efficiency of different extraction steps were critically evaluated by total selenium analysis and size-exclusion chromatography (SEC)-ICP MS. Prior to electrophoresis proteins were purified by acetone precipitation. The protein-containing spots from 2D GE were excised and digested with trypsin. The digests obtained were analyzed by nanoHPLC-ICP MS in order to check for the presence of selenium-containing peptides; this allowed the detection of target proteins for further analyses (two out of five spots). The subsequent analyses of the selected digests by nanoHPLC-ES MS/MS allowed the attribution of amino acid sequences to peaks detected by ICP MS revealing the presence of two selenium-containing proteins: SIP 18 and HSP 12.  相似文献   

12.
采用2D Micro-HPLC系统,用MS对六种蛋白质的胰蛋白酶解多肽产物进行了分析,实现了蛋白质的高灵敏度、高分离度的检测。结合离子交换色谱法和反相毛细管色谱法,利用六个捕集柱和脱盐系统,可对各种分离条件进行优化。因此,可以实现对多种痕量酶解多肽的分离检测。该系统是痕量蛋白质和未知蛋白质检测的有力工具,结合高性能质谱仪,可以达到非常高的灵敏度。  相似文献   

13.
Jin Y  Manabe T 《Electrophoresis》2007,28(3):449-459
Previously, we have reported a high-efficiency method of protein extraction from CBB-stained polyacrylamide gels for molecular mass measurement with MALDI-TOF MS [1]. In the present work, the alkaline extraction method was applied to CBB-stained 2-DE gels on which human plasma proteins were separated in the absence of denaturant. In order to examine the performance of the method, ten spots with apparent molecular masses (MMapp) in the range of 65 to 1000 kDa were selected and the proteins were extracted from the gel pieces. The extracts were subjected to whole-mass measurement by MALDI-TOF MS, with and without DTT treatment. In addition, the extracts were subjected to in-solution trypsin digestion followed by MALDI-TOF MS and PMF analysis. Successful extraction of proteins from the ten spots, up to MMapp 1000 kDa, has been ascertained by the significant PMF assignment (MASCOT) with high sequence coverage of the respective proteins or polypeptides. When direct mass measurement of the extracted proteins was attempted, three spots in MMapp range 65-100 kDa provided mass peaks. Five spots in MMapp range 150-400 kDa did not give mass peaks of the intact proteins, but showed those of the constituent polypeptides after the DTT treatment. Extraction of proteins prior to trypsin digestion enabled the procedure of PMF analysis to be much simpler than the conventional in-gel digestion method, providing comparable protein scores and sequence coverage. The technique presented here suggests a new strategy for the characterization of proteins separated by nondenaturing 2-DE.  相似文献   

14.
The high‐performance liquid chromatography (HPLC) column is capable of enrichment/pre‐concentration of trace impurities in the mobile phase during the column equilibration, prior to sample injection and elution. These impurities elute during gradient elution and result in significant chromatographic peaks. Three types of purified water were tested for their impurity levels, and hence their performances as mobile phase, in HPLC followed by total ion current (TIC) mode of MS. Two types of HPLC‐grade water produced 3–4 significant peaks in solvent blanks while LC/MS‐grade water produced no peaks (although peaks were produced by LC/MS‐grade water also after a few days of standing). None of the three waters produced peaks in HPLC followed by UV‐Vis detection. These peaks, if co‐eluted with analyte, are capable of suppressing or enhancing the analyte signal in a MS detector. As it is not common practice to run solvent blanks in TIC mode, when quantification is commonly carried out using single ion monitoring (SIM) or single or multiple reaction monitoring (SRM or MRM), the effect of co‐eluting impurities on the analyte signal and hence on the accuracy of the results is often unknown to the analyst. Running solvent blanks in TIC mode, regardless of the MS mode used for quantification, is essential in order to detect this problem and to take subsequent precautions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Zymogen granule (ZG) constituents play important roles in pancreatic injury and disease. In previous studies, proteomic analyses with rat zymogen granules were separated by two‐dimensional gel electrophoresis or one‐dimensional SDS–PAGE, followed by in‐gel tryptic digestion. In order to overcome the disadvantage of in‐gel digestion and to carry out further in‐depth proteomic analysis of the zymogen granules, in this study, by combining a filter‐aided sample preparation method and fully automated 2D‐LC‐MS/MS technique, 800 ZG proteins were identified with at least two unique peptides for each protein, 75% of which have not been previously reported. The identified proteins revealed broad diversity in protein identity and function. This is the largest dataset of ZG proteome, and also the first dataset of the mouse ZG proteome, which may help elucidate on the molecular architecture of ZGs and their functions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Despite the increasing number of studies using mass spectrometry for three dimensional analyses of proteins (MS3D), the identification of cross-linked peptides remains a bottleneck of the method. One of the main reasons for this is the lack of knowledge about the fragmentation of these species. Intermolecular cross-linked peptides are considered the most informative species present in MS3D experiment, since different peptides are connected by a cross-linker, the peptides chain can be either from a single protein, providing information about protein folding, or from two different proteins in a complex, providing information about binding partners, complex topology and interaction sites. These species tend to be large and highly charged in ESI, making comprehensive fragmentation by CID MS/MS problematic. On the other hand, these highly charged peptides are very suitable for dissociation using both infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD). Herein, we report the fragmentation study of intermolecular cross-linked peptides using IRMPD and ECD. Using synthetic peptides and different commercial cross-linkers, a series of intermolecular cross-linked peptides were generate, and subsequently fragmented by IRMPD and ECD in a FT-ICR-MS instrument. Due to the high mass accuracy and resolution of the FT-ICR, the fragment ions could be attributed with high confidence. The peptides sequence coverage and fragmentation features obtained from IRMPD and ECD were compared for all charge states.  相似文献   

17.
ProteinChip surface‐enhanced laser desorption/ionization technology and magnetic beads‐based ClinProt system are commonly used for semi‐quantitative profiling of plasma proteome in biomarker discovery. Unfortunately, the proteins/peptides detected by MS are non‐recoverable. To obtain the protein identity of a MS peak, additional time‐consuming and material‐consuming purification steps have to be done. In this study, we developed a magnetic beads‐based proteomic fingerprinting method that allowed semi‐quantitative proteomic profiling and micropreparative purification of the profiled proteins in parallel. The use of different chromatographic magnetic beads allowed us to obtain different proteomic profiles, which were comparable to those obtained by the ProteinChip surface‐enhanced laser desorption/ionization technology. Our assays were semi‐quantitative. The normalized peak intensity was proportional to concentration measured by immunoassay. Both intra‐assay and inter‐assay coefficients of variation of the normalized peak intensities were in the range of 4–30%. Our method only required 2 μL of serum or plasma for generating enough proteins for semi‐quantitative profiling by MALDI‐TOF‐MS as well as for gel electrophoresis and subsequent protein identification. The protein peaks and corresponding gel spots could be easily matched by comparing their intensities and masses. Because of its high efficiency and reproducibility, our method has great potentials in clinical research, especially in biomarker discovery.  相似文献   

18.
A recently developed proteomic strategy, the “GG‐azide”‐labeling approach, is described for the detection and proteomic analysis of geranylgeranylated proteins. This approach involves metabolic incorporation of a synthetic azido‐geranylgeranyl analog and chemoselective derivatization of azido‐geranylgeranyl‐modified proteins by the “click” chemistry, using a tetramethylrhodamine‐alkyne. The resulting conjugated proteins can be separated by 1‐D or 2‐D and pH fractionation, and detected by fluorescence imaging. This method is compatible with downstream LC‐MS/MS analysis. Proteomic analysis of conjugated proteins by this approach identified several known geranylgeranylated proteins as well as Rap2c, a novel member of the Ras family. Furthermore, prenylation of progerin in mouse embryonic fibroblast cells was examined using this approach, demonstrating that this strategy can be used to study prenylation of specific proteins. The “GG‐azide”‐labeling approach provides a new tool for the detection and proteomic analysis of geranylgeranylated proteins, and it can readily be extended to other post‐translational modifications.  相似文献   

19.
We describe an optimised protocol for application of isobaric tags for relative and absolute quantitation (iTRAQ) and tandem mass spectrometry to obtain relative quantitative data from peptides derived from tryptic digestions of proteins fractionated by using the 2D liquid-phase ProteomeLab™ PF 2D technique. This methodology is suitable for the quantitation of proteins from a pool of co-eluting proteins which are often difficult to identify for the purpose of candidate protein selection for biologically relevant qualitative/quantitative changes under experimental conditions or in disease states. iTRAQ quantitation also facilitates the possibility of result to result comparison using other methodologies such as UV protein quantitation via the ProteomeLab™ PF 2D technique. The optimised protocol outlined here allows relative quantitation by MALDI-TOF/TOF mass spectrometry with high sensitivity and without the need to perform 2D HPLC separation of labelled peptides. The overall outcome is the simplification in the data complexity and the ease of use of the labelling protocol. This study is dedicated to Dr. Josef Chmelik in memory of his contribution and constant inspiration.  相似文献   

20.
The Mascot search algorithm is one of the most commonly used tools for protein identification. Tandem mass spectrometry data searched against a protein sequence database is utilized for identifying peptides and proteins, each reported with a score. Higher Mascot scores are associated with lower chances of random hits. The process of peak selection performed by the search engine prior to the search is a critical aspect of the process. Here, we show that Mascot divides the MS/MS spectrum into fixed m/z regions for peak selection, starting at the lowest m/z value of the peak list. Therefore, modifying the m/z range of the peak lists by insertion of a dummy peak with low m/z value changes the ensemble of peaks used for searching. As a consequence, Mascot peptide scores and search results are altered significantly and a different subset of the peptides present in the sample is identified after processing. We further show that the effect can be exploited and additional proteins and peptides can be identified by repeating the search with a combined set of differently processed files, even when applying identical false-positive rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号