首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 20K dalton fragment of Ca2+ + Mg2+-ATPase obtained from th tryptically digested sarcoplasmic reticulum has been further purified using Bio-Gel P-100. This removed low-molecular-weight UV-absorbing and positive Lowry-reacting contaminants. The ionophoric activity of the 20K fragment in both oxidized cholesterol and phosphatidylcholine:cholesterol membranes is unaltered by this further purification. The 20K selectivity sequence in phosphatidylcholine:cholesterol membrane is Ba2+ greater than Ca2+ greater than Sr2+ greater than Mn2+ Mg2+. Digestion of intact sarcoplasmic reticulum vesicles with trypsin, which results in the dissection of the hydrolytic site (30K) from the ionophoric site (20K), is shown to disrupt energy transduction between ATP hydrolysis and calcium transport. This further implicates the 20K dalton fragment as a calcium transport site. These data and previous evidence are discussed in terms of a proposed model for the ATPase molecular structure and the mechanisms of cation transport in sarcoplasmic reticulum.  相似文献   

2.
以3-异氰酸丙基三乙氧基硅烷和对甲氧基苯胺为原料合成了一种可以自组装形成有机-无机杂化材料的化合物--3-(脲基-4-甲氧基苯基)丙基三乙氧基硅烷. 采用FT-IR, 1H NMR, DSC 和XRD 分析方法对该化合物的结构以及结晶性进行了表征. 将该化合物与聚乙烯醇(PVA)共混, 利用化合物的自组装性质构筑结构均一且致密无孔的离子通道杂化膜, 通过自制的膜运输实验装置测定膜对阳离子的传输性能并提出了相应的传输机制. SEM 照片显示, 自组装杂化膜致密无缺陷, 膜厚度为8 μm. 选择5 种阳离子进行运输实验测试, 结果表明, 自组装杂化离子通道膜对一价的碱金属离子Li+, Na+和K+有很好的传输功能, 这要归功于杂化材料中甲氧基苯基与碱金属阳离子形成的阳离子-π相互作用力. 碱金属阳离子在膜中的扩散过程可由溶解-扩散机制来解释, 结果显示, Li+, Na+和K+在杂化膜中传输的渗透率大小为: PNa+ > PK+ > PLi+ , 说明本研究中的的自组装杂化离子通道膜对Na+有优先选择性. 杂化离子通道膜对二价的Ca2+和Mg2+没有传输作用, 此结果给一二价阳离子的分离带来很好的研究思路.  相似文献   

3.
Bis(calix[4]diquinones) 1 and 2 and double calix[4]diquinone 3 have been synthesized from their corresponding double calix[4]arenes 4, 5, and 6, respectively. Compounds 4-6 have been prepared from one-pot and stepwise syntheses under high pressure. Complexation studies of ligands 1-3 with alkali metal ions such as Li+, Na+, K+, and Cs+ were carried out by 1H NMR titrations. Receptors 1 can selectively form 1:1 complexes with Na+. Ligand 2 prefers to form 1:1 complexes with K+ and Cs+. Receptor 3 retained the cone conformation of the calix[4]arene unit upon binding K+ but changed the conformation when complexing Li+ and Na+. Electrochemical studies using cyclic voltammetry and square wave voltammetry showed significant changing of voltammograms of 2 and 3 in the presence of alkali metal ions. Receptor 3 showed the electrochemically switched binding property toward Na+ and K+.  相似文献   

4.
设计合成了吡咯并[2,1,5-cd]中氮茚酰腙衍生物6. 测试了其紫外光谱和荧光光谱, 研究了其对铜离子的选择性识别作用. 结果表明, 化合物6作为铜离子荧光探针, 受常见离子干扰较小, 对于铜离子有着较高的选择性和较低的检出限.  相似文献   

5.
采用苯并15冠5、没食子酸甲酯以及1-溴十一烯等物质为原料,合成超分子化合物2-(1-甲基羟甲基)-[1,4,7,10,13-苯并15冠5]-3,4,5-三[4-(10-十一烯-1-羰基)苄氧基]苯甲酸酯.然后用紫外光接枝法将其接枝到聚丙烯腈(PAN)微孔膜表面,构筑具有离子传输功能的离子传输复合膜,接枝量为3.025 mg/cm2.通过ATR,XPS,SEM以及AFM等手段对离子传输膜的结构性能进行表征.结果表明,这种超分子化合物在PAN膜的表面自组装成柱状通道,并形成致密皮层.采用自行设计的膜运输装置对膜的离子识别和运输功能进行评测.通过与非功能材料(丙烯酸)接枝膜的对比,可以认为本文制备的离子识别膜可以选择性识别和运输碱金属阳离子,其运输能力顺序为Na+>K+>Li+.  相似文献   

6.
Cation binding to three apoparvalbumins was studied by means of 113Cd NMR. The 3 parvalbumins that were investigated were carp pI 4.25, rabbit pI 5.5 and pike pI 5.0. The results showed that Cd2+ ions bind to the EF and CD sites of carp apoparvalbumin pI 4.25 with about the same affinity. For rabbit (pI 5.5) apoparvalbumin, Cd2+ binds preferentially to the EF site, while for pike (pI 5.0) apoparvalbumin, it was the CD site that exhibited somewhat higher affinity for Cd2+. The effect of Mn2+ on the 113Cd signals of rabbit parvalbumin was used to assign the 113Cd NMR signals to the EF and CD sites. The Mn2+ paramagnetic effect on rabbit and pike parvalbumins differed from that obtained for carp parvalbumin. This is in agreement with the assumption that the beta-lineage parvalbumins possess a third external site of higher affinity than the alpha-lineage parvalbumins. Furthermore, 23Na NMR was used to study Na+-Mg2+ competition in the native carp (pI 4.25) parvalbumin. The results showed that Na+ and Mg2+ compete for the same site, the third external site.  相似文献   

7.
New compounds with a g -Ca 3 (PO 4 ) 2 structure type were found in three systems: Sr 9+ x M 1.5 m x (PO 4 ) 7 ( M = Mn, Fe, Co, Ni, Cu, and Cd; space group R 3 m ; Z = 3), Sr 9 R (PO 4 ) 7 ( R = Al, Sc, Cr, Fe, Ga, In, and Gd-Lu; space group P 2/ c , Z = 4), and Sr 9+2 x M 1+ x A 1 m 6 x (PO 4 ) 7 ( M = Mn, Ni, Cd; space group R 3 c and Z = 6 for A = Na, K; space group P 2/ m and Z = 4 for A = Li). Crystal structures of these compounds were determined by time-of-flight neutron, synchrotron X-ray, and laboratory X-ray powder diffraction. Reversible polar-to-centrosymmetric phase transitions ( R 3 c {\begin{array}{c}\\[-14pt]\hspace*{.5pt}\to\\[-7pt]\hspace*{-.5pt}\gets \end{array}} R 3 m ) were observed at high temperatures in Ca 3 m x Sr x (PO 4 ) 2 (0 h x h 12/7), Ca 10.5 m 1.5 x Fe x (PO 4 ) 7 (0 h x h 1), and Ca 9 R (PO 4 ) 7 . Solid solutions Ca 3 m x Sr x (PO 4 ) 2 (13/7 h x h 16/7) are centosymmetric with space group R 3 m at room temperature. These phase transitions were studied by high-temperature X-ray diffraction, second-harmonic generation, DSC, electric-conductivity and dielectric measurements.  相似文献   

8.
Manganese and molybdenum mixed oxides in a thin film form were deposited anodically on a platinum substrate by cycling the electrode potential between 0 and +1.0 V vs Ag/AgCl in aqueous manganese(II) solutions containing molybdate anion (MoO(4)2-). A possible mechanism for the film formation is as follows. First, electrooxidation of Mn2+ ions with H2O yields Mn oxide and protons. Then, the protons being accumulated near the electrode surface react with MoO(4)2- to form polyoxomolybdate through a dehydrated condensation reaction (by protonation and dehydration). The condensed product coprecipitates with the Mn oxide. Cyclic voltammetry of the Mn/Mo oxide film-coated electrode in aqueous 0.5 M Na2SO4 solution exhibited a pseudocapacitive behavior with higher capacitance and better rate capability than that of the pure Mn oxide prepared similarly, most likely as a result of an increase in electrical conductivity of the film. Electrochemical quartz crystal microbalance and X-ray photoelectron spectroscopy clearly demonstrated that the observed pseudocapacitive behavior results from reversible extraction/insertion of hydrated protons to balance the charge upon oxidation/reduction of Mn3+/Mn4+ in the film.  相似文献   

9.
Li+ ions can interplay with other cations intrinsically present in the intra- and extra-cellular space (i.e. Na+, K+, Mg2+ and Ca2+) have therapeutic effects (e.g. in the treatment of bipolar disorder) or toxic effects (at higher doses), likely because Li+ interferes with the intra-/extra-cellular concentration gradients of the mentioned physiologically relevant cations. The cellular transmembrane transport can be modelled by molybdenum-oxide-based Keplerates, i.e. nano-sized porous capsules containing 132 Mo centres, monitored through 6/7Li as well as 23Na NMR spectroscopy. The effects on the transport of Li+ cations through the 'ion channels' of these model cells, caused by variations in water amount, temperature, and by the addition of organic cationic 'plugs' and the shift reagent [Dy(PPP)2](7-) are reported. In the investigated solvent systems, water acts as a transport mediator for Li+. Likewise, the counter-transport (Li+/Na+, Li+/K+, Li+/Cs+ and Li+/Ca2+) has been investigated by 7Li NMR and, in the case of Li+/Na+ exchange, by 23Na NMR, and it has been shown that most (in the case of Na+ and K+, all (Ca2+) or almost none (Cs+) of the Li cations is extruded from the internal sites of the artificial cell to the extra-cellular medium, while Na+, K+ and Ca2+ are partially incorporated.  相似文献   

10.
Limestone and dolomite minerals have been investigated by EPR and optical absorption studies. The optical absorption results indicate the presence of ferrous and ferric ion in both the minerals. The bands observed at 24,750, 22,780, 19,415 and 14,450cm(-1) are assigned to 6A1-->4T2 (4D), 6A1-->4E, 4A1 (4G), 6A1-->4T2 (4G) and 6A1-->4T1 (4G) d-d transitions of Fe3+ ions, respectively. A low energy band at 10,638cm(-1) is identified as being due to Fe2+ ion and can be attributed to 5T2g-->5E(g) transition. The weak band in the region 30,000-40,000cm(-1) corresponds to Fe-O charge transfer. Crystal field and Racah parameters evaluated for the Fe2+ ion are Dq=990cm(-1), B=885cm(-1) and C=3860cm(-1) and that for Fe3+ ions are Dq=1040cm(-1), B=703cm(-1) and C=3150cm(-1). The room temperature 9 and 35GHz EPR spectra of the minerals exhibit a sextet hyperfine pattern characteristic of Mn2+. The EPR parameters obtained for Mn2+ in limestone are g=2.00399, A= -9.411mT, D= -8.19mT and these values confirm that the Mn2+ ion are located in the calcite impurity. For Mn2+ in dolomite are g=2.0004, A= -9.45mT for Mn2+ substituted in the Ca lattice site and g=2.00984, A= -9.37mT, D= -9.94mT for substitution at the Mg site. The EPR spectra of heat-treated limestone and dolomite samples at 950 degrees C show a signal corresponding to CO2(-) ion.  相似文献   

11.
The alluaudite lithiated phases Li(0.5)Na(0.5)MnFe(2)(PO(4))(3) and Li(0.75)Na(0.25)MnFe(2)(PO(4))(3) were prepared via a sol-gel synthesis, leading to powders with spongy characteristics. The Rietveld refinement of the X-ray and neutron diffraction data coupled with ab initio calculations allowed us for the first time to accurately localize the lithium ions in the alluaudite structure. Actually, the lithium ions are localized in the A(1) and A(1)' sites of the tunnel. M?ssbauer measurements showed the presence of some Fe(2+) that decreased with increasing Li content. Neutron diffraction revealed the presence of a partial Mn/Fe exchange between the two transition metal sites that shows clearly that the oxidation state of the element is fixed by the type of occupied site. The electrochemical properties of the two phases were studied as positive electrodes in lithium batteries in the 4.5-1.5 V potential window, but they exhibit smaller electrochemical reversible capacity compared with the non-lithiated NaMnFe(2)(PO(4))(3). The possibility of Na(+)/Li(+) ion deintercalation from (Na,Li)MnFe(2)(PO(4))(3) was also investigated by DFT+U calculations.  相似文献   

12.
Lipophilic guanosine derivatives that form G-quadruplexes are promising building blocks for ionophores and ion channels. Herein, cation exchange between solvated cations (K+ and NH4+) and bound cations in the G-quadruplex [G1]16.4Na+.4DNP- was studied by electrospray ionization mass spectrometry and solution 1H, 15N NMR spectroscopy. The ESI-MS and 1H NMR data provided evidence for the formation of mixed-cationic Na+, K+ G-quadruplexes. The use of 15NH4+ cations in NMR titrations, along with 15N-filtered 1H NMR and selective NOE experiments, identified two mixed-cationic intermediates in the cation exchange pathway from [G1]16.4Na+.4DNP- to [G1]16.4NH4+.4DNP-. The central Na+, bound between the two symmetry-related G8-Na+ octamers, exchanges with either K+ or NH4+ before the two outer Na+ ions situated within the C4 symmetric G8 octamers. A structural rationale, based on differences in the cations' octahedral coordination geometries, is proposed to explain the differences in site exchange for these lipophilic G-quadruplexes. Large cations such as Cs+ can be exchanged into the central cation binding site that holds the two symmetry-related C4 symmetric G8 octamer units together. The potential relevance of these findings to both supramolecular chemistry and DNA G-quadruplex structure are discussed.  相似文献   

13.
The paper presents results of investigation of exchange of the clinoptilolite tuff cations with hydrogen ions from HCl solution of concentration 0.1 mmol cm(-3) and ammonium ions solutions of concentrations 0.0071 to 2.6 mmol cm(-3). Molal concentrations, x (mmol g(-1)) of cations exchanged in acid solution and in ammonium ions solutions were compared with molal concentrations of cations obtained by determination of the cation-exchange capacity of clinoptilolite tuff. The obtained results show that at ammonium ion concentrations lower than 0.1 mmol cm(-3), with regard to exchange capacity for particular ions, best exchanged are Na+ ions, followed by Mg2+ and Ca2+ ions, while exchange of K+ ions is the poorest (Na+ > Mg2+ > Ca2+ > K+). At ammonium concentrations from 0.2 to 1 mmol cm(-3) the order is Na+ > Ca2+ > Mg2+ > K+. At concentrations higher than 1 mmol cm(-3) the order is Na+ > Ca2+ > K+ > Mg2+. The results are a consequence of the uptake of hydrogen ions by zeolite samples in ammonium ions solutions at concentrations lower than 1 mmol cm(-3) and indicate the importance of Mg2+ (besides Na+ ions) for the exchange between clinoptilolite cations and H+ ions, in contrast to K+ ions, whose participation in the reaction with H+ ions is the lowest. During decationization of the clinoptilolite in acid solution, best exchanged are Na+, Mg2+, and Ca2+ ions, while exchange of K+ ions is the poorest. Due to poor exchange of K+ and H+ ions and good exchange of Na+, Mg2+, and Ca2+ ions, it is to be assumed that preservation of stability of the clinoptilolite structure is caused by K+ ions present in the channel C. Clinoptilolite is dissolved in the clinoptilolite A and B channels where Na+, Mg2+, and Ca2+ ions are present. On the acid-modified clinoptilolite samples, exchange of ammonium ions is poorer than on natural zeolite. The longer the contact time of the zeolite and acid solution, the worse ammonium ions exchange. It can be assumed that H+ ions exchanged with zeolite cations are consumed for solution of aluminum in the clinoptilolite structure; therefore the concentration of H+ ions as exchangeable cations decreases. In the ammonium ion solution at a concentration of 0.0065 mmol cm(-3), from the acid-modified zeolite samples, Al3+ ions are exchanged best, followed by Na+, Mg2+, Ca2+, and K+ ions. Further to the results, it is to be assumed that exchangeable Al3+ ions available from clinoptilolite dissolution are best exchanged with H+ ions in acid solution.  相似文献   

14.
采用固相法制备出具有层状结构的KTiNbO5,通过离子交换制备K1-2xMxTiNbO5(M=Mn2+、Ni2+)。采用X射线粉末衍射(XRD)和紫外-可见漫反射光谱技术对样品晶体结构与光谱响应特征进行表征,采用红外光谱方法考察样品对二甲基硫(DMS)和乙硫醇(EM)吸附与光催化氧化行为。结果表明,采用Mn2+和Ni2+对KTiNbO5离子交换后,层板间距增加,对光谱吸收由紫外区移向可见光区,带隙能量由3.35eV相应地移至2.97eV和2.45eV。K1-2xMxTiNbO5对DMS和EM的吸附作用力较弱,不受阳离子影响。K1-2xMnxTiNbO5只在紫外光辐射下呈现催化活性,并将硫醚、硫醇氧化为亚砜、砜和磺酸;而K1-2xNixTiNbO5在可见与紫外光辐射下均具有光催化活性,在可见光辐射下,乙硫醇被氧化至磺酸,而在紫外光辐射下硫醇被矿化并产生硫酸盐与碳酸盐。  相似文献   

15.
Yb3+-doped MnCl2 and MnBr2 crystals exhibit strong red upconversion luminescence under near-infrared excitation around 10 000 cm(-1) at temperatures below 100 K. The broad red luminescence band is centred around 15 200 cm(-1) for both compounds and identified as the Mn2+ 4T1g-->6A1g transition. Excitation with 10 ns pulses indicates that the upconversion process consists of a sequence of ground-state and excited-state absorption steps. The experimental VIS/NIR photon ratio at 12 K for an excitation power of 191 mW focused on the sample with a 53 mm lens is 4.1% for MnCl2:Yb3+ and 1.2% for MnBr2:Yb3+. An upconversion mechanism based on exchange coupled Yb3+-Mn2+ ions is proposed. Similar upconversion properties have been reported for RbMnCl3:Yb3+, CsMnCl3:Yb3+, CsMnBr3:Yb3+, RbMnBr3:Yb3+, Rb2MnCl4:Yb3+. The efficiency of the upconversion process in these compounds is strongly dependent on the connectivity between the Yb3+ and Mn2+ ions. The VIS/NIR photon ratio decreases by three orders of magnitude along the series of corner-sharing Yb3+-Cl--Mn2+, edge-sharing Yb3+-(Cl-)2-Mn2+ to face-sharing Yb3+-(Br-)3-Mn2+ bridging geometry. This trend is discussed in terms of the dependence of the relevant super-exchange pathways on the Yb(3+)-Mn2+ bridging geometry.  相似文献   

16.
用沉淀法制备了Li3PO4、BiPO4和Li3PO4、BiPO4三种固体表面材料,并用XRD、IR、TPD和激光促进表面反应(LSSR)等技术研究了这些固体表面上甲醇氧化偶联生成乙二醇的反应规律。实验结果表明:甲醇在固体材料表面的P=9键上产生C-H端的分子态吸附,在表面的Lewis酸位(金属离子)上产生解离态吸附。Li3PO4和BiPO4的相互作用可促进甲醇在固体表面上的分子态吸附而抑制解离态吸  相似文献   

17.
Liu Y  Zhang N  Chen Y  Wang LH 《Organic letters》2007,9(2):315-318
A water-soluble fluorescent zinc sensor which binds strongly to Zn2+ (log K = 12.4) was successfully synthesized under physiological conditions. This sensor exhibits a good fluorescence response to Zn2+ over a wide pH range in water. Under the same conditions, several metal ions commonly present in a physiological environment, such as Na+, K+, Ca2+, Mg2+, Mn2+, Fe2+, and Co2+, showed little interference to the fluorescence response to Zn2+. [structure: see text]  相似文献   

18.
Human red blood cells (RBC) contain a cytoplasmic, nonhemoglobin protein which activates the (Ca2+-Mg2+)ATPase of isolated RBC membranes. Results presented in this paper confirm that activation of (Ca2+-Mg2+)ATPase is associated with binding of the cytoplasmic activator to the membrane. Binding of the cytoplasmic activator is reversible and dependent on ionic strength and Ca2+. Cytoplasmic activator is sensitive to trypsin but is not degraded when intact RBC are exposed to trypsin. Cytoplasmic activator does not modify the (Ca2+-Mg2+)-ATPase of membranes from RBC exposed to activator prior to hemolysis. Thus, the activator is located in the cell and appears to act by binding to the inner membrane surface.  相似文献   

19.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly.Mn+ (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies DeltaG degrees are negative and span a rather broad energy interval (from -90 to -1100 kJ mol(-1)), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (-1076 kJ mol(-1)) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly.Mn+ and GlyZwitt.Mn+ complexes reduces the relative stability of metallic complexes of glycine. For Mn+ = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly.K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol(-1)) of the GlyZwitt.K+H2O5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (-10 to -38 kJ mol(-1)), and the NO coordination is preferred in the Gly.Mn+(H2O)5 (Mn+ = Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) complexes over the OO coordination.  相似文献   

20.
Novel artificial ion channels (1 and 2) based on CB[n] (n = 6 and 5, respectively) synthetic receptors with carbonyl-fringed portals (diameter 3.9 and 2.4 A, respectively) can transport proton and alkali metal ions across a lipid membrane with ion selectivity. Fluorometric experiments using large unilamellar vesicles showed that 1 mediates proton transport across the membranes, which can be blocked by a neurotransmitter, acetylcholine, reminiscent of the blocking of the K+ channels by polyamines. The alkali metal ion transport activity of 1 follows the order of Li+ > Cs+ approximately Rb+ > K+ > Na+, which is opposite to the binding affinity of CB[6] toward alkali metal ions. On the other hand, the transport activity of 2 follows the order of Li+ > Na+, which is also opposite to the binding affinity of 2 toward these metal ions, but virtually no transport was observed for K+, Rb+, and Cs+. It is presumably because the carbonyl-fringed portal size of 2 (diameter 2.4 A) is smaller than the diameters of these alkali metal ions. To determine the transport mechanism, voltage-clamp experiments on planar bilayer lipid membranes were carried out. The experiments showed that a single-channel current of 1 for Cs+ transport is approximately 5 pA, which corresponds to an ion flux of approximately 3 x 107 ions/s. These results are consistent with an ion channel mechanism. Not only the structural resemblance to the selectivity filter of K+ channels but also the remarkable ion selectivity makes this model system unique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号