首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present several design examples of how to apply transformation optics and curved space under coordinate transformation to manipulating the surface plasmon waves in a controlled manner.We demonstrate in detail the design procedure of the plasmonic wave squeezer,in-plane bend and omnidirectional absorber.We show that the approximation method of modifying only the dielectric material of a dielectric-metal surface of the plasmonic device could lead to acceptable performance,which facilitates the fabrication of the device.The functionality of the proposed plasmonic device is verified using three-dimensional full-wave electromagnetic simulations.Aiming at practical realization,we also show the design of a plasmonic in-plane bend and omnidirectional absorber by an alternative transformation scheme,which results in a simple device structure with a tapered isotropic dielectric cladding layer on the top of the metal surface that can be fabricated with existing nanotechnology.  相似文献   

2.
余振中  冯一军  王正斌  赵俊明  姜田 《中国物理 B》2013,22(3):34102-034102
We present several design examples of how to apply the transformation optics and curved space under coordinate transformation to manipulating the surface plasmon waves in a controlled manner. We demonstrate in detail the design procedure of the plasmonic wave squeezer, in-plane bend and omnidirectional absorber. We show that the approximation method of modifying only the dielectric material of a dielectric-metal surface of the plasmonic device could lead to acceptable performance, which facilitates the fabrication of the device. The functionality of the proposed plasmonic device is verified using three-dimensional full-wave electromagnetic simulations. Aiming at practical realization, we also show the design of plasmonic in-plane bend and omnidirectional absorber by an alternative transformation scheme, which results in simple device structure with a tapered isotropic dielectric cladding layer on the top of the metal surface that can be fabricated with the existing nanotechnology.  相似文献   

3.
Abstract We demonstrate that the rectangular nanohole arrays perforated in a 100 nm gold film can be used to tune the polarization direction of the transmitted light with maximum rotation angle of about 30 degrees. Theoretical analysis with the three-dimensional finite-difference time-domain simulations indicates that this phenomenon is attributed to the excitation of the surface plasmon wave on the gold film surface and the resonance of localized surface plasmon in the hole. With multiple plasmon resonances, the plasmonic waveplate can realize multi-wavelength polarization modulation. Our results may be useful to understanding the physical mechanism of enhanced plasmon mediated transmission and potential applications in plasmonic optical components.  相似文献   

4.
We report on silver nanocubes (AgNCs) infiltrated into cylindrical nanopores of porous alumina membranes (PAM) with an outstanding chemical sensitivity based on refractive index sensing (RIS) measurements. Numerical simulations performed using the finite‐difference time‐domain (FDTD) method suggested that the enhanced sensitivity is based mainly on the inter‐pore coupling plasmonic effect. This effect is related to plasmonic amplification based on localized surface plasmon resonance (LSPR) coupling between AgNCs located at the pore walls of neighboring cylindrical pores and separated by a nanoscale wall. Results are discussed for different aggregation scenarios ranging from individual nanocubes through pentamers on a flat glass surface, a flat alumina surface, and a concave local shape representing the experimental conditions. An experimental RIS sensitivity of about 770 nm per refractive index unit was found to be more than an order of magnitude higher for silver nanocube aggregates within cylindrical pores than that observed for ordinary planar substrates.  相似文献   

5.
《中国物理 B》2021,30(7):77301-077301
Localized surface plasmon has been extensively studied and used for the photocatalysis of various chemical reactions.However, the different contributions between plasmon resonance and interband transition in photocatalysis has not been well understood. Here, we study the photothermal and hot electrons effects for crystal transformation by combining controlled experiments with numerical simulations. By photo-excitation of Na YF4:Eu~(3+)@Au composite structure, it is found that the plasmonic catalysis is much superior to that of interband transition in the experiments, owing to the hot electrons generated by plasmon decay more energetic to facilitate the reaction. We emphasize that the energy level of hot electrons plays an essential role for improving the photocatalytic activity. The results provide guidelines for improving the efficiency of plasmonic catalysis in future experimental design.  相似文献   

6.
Ekinci Y  Solak HH  David C 《Optics letters》2007,32(2):172-174
We investigated the extraordinary optical transmission phenomenon in the UV range by fabricating large-area, free-standing aluminum hole arrays using extreme UV interference lithography and shadow thermal evaporation. Transmission spectra show strong peaks in the UV region resulting from both surface plasmon polariton and localized surface plasmon excitations. The results indicate that the high plasmon frequency of Al is directly responsible for the presence of strong resonance peaks in the UV region, which supports the role of plasmonic phenomena in the extraordinary transmission. The simple fabrication method enables large-area production of such structures for research and industrial production purposes.  相似文献   

7.
Explicitly time-dependent configuration-interaction theory is used to predict a new type of plasmonic behavior in linear hydrogen chains. After an intense ultrashort laser pulse brings the system into a broad superposition of excited states, the electronic dipole of the entire chain oscillates coherently, and the system is predicted to emit radiation at energies significantly lower than the first absorption band. A simple classical model accurately predicts the energy of this plasmon resonance for different hydrogen chain lengths and electron densities, demonstrating that collective, free-electron-like behavior can arise in chains of as few as 20 hydrogen atoms. The excitation mechanism for this plasmonic resonance is a highly nonlinear, multiphoton process, different from the linear excitation of ordinary surface plasmons.  相似文献   

8.
辛旺  吴仍来  薛红杰  余亚斌 《物理学报》2013,62(17):177301-177301
本文运用紧束缚模型对介观尺寸原子链的等离激发进行了系统的研究, 通过量子响 应理论和相无规近似得到了等离激元的本征频率方程, 通过该方程计算了系统中等离子体的激发能量, 并分别对体系的本征振荡以及外电场作用在原子链上发生共振的情况进行了研究. 结果表明, 体系在外场作用下发生共振时, 偶极矩的峰值与等离子体的激发态相对应, 说明外场此时激发了等离激元; 体系处在共振情况下, 电荷振荡的幅度远远大于非共振的情况, 相对来说体系的电荷虚部的共振更为明显. 对于体系的本征等离振荡频率, 同等长度时等离子体的激发能量总是大于同级的单电子激发能量; 等离激元的能谱与原子链的长度和电子密度以及系统的库仑关联强度都有很大关系; 在原子链长度保持不变的情况下, 等离子体的激发能量随电子数目的变化以半满为中心呈对称关系. 关键词: 纳米结构 一维原子链 等离激元  相似文献   

9.
By virtue of the efficiency of the Dirichlet-to-Neumann map method, the details of the band structure of a two-dimensional square lattice photonic crystal composed of dispersive metamaterial circular rods in air background has been studied. We show that there are two flat bands at the band structure of the system for both H-polarization and E-polarization. These flat bands are created around the magnetic resonance frequency, surface plasmon frequency and magnetic surface plasmon frequency. We realized that the modes with frequencies lying above the resonance frequency behave like resonant cavity modes created in a single metallic cylindrical waveguide. While, due to the relatively large and imaginary refractive index of the metamaterial rods at the frequencies lying below the resonance frequency, the modes are localized modes with negligible penetration into the rods. Moreover, the modes are localized at the interface of the cylindrical metamaterial rods and the air background for the frequencies around the surface plasmon frequency and the magnetic surface plasmon frequency.  相似文献   

10.
蒋行  周玉荣  刘丰珍  周玉琴 《物理学报》2018,67(17):177802-177802
近年来,表面等离激元光子学发展迅速,并取得了众多新成果.重掺杂半导体材料的表面等离激元共振性质的研究,也得到了人们越来越多的关注.本文通过纳米球刻印技术制备准三维二氧化硅纳米球阵列,在阵列上沉积铟锡氧化物薄膜,通过不同条件下的后退火处理改变铟锡氧化物薄膜的载流子浓度和载流子迁移率,并研究随着材料性质的改变其相应表面等离激元共振特性的变化规律.结果表明:退火处理均使铟锡氧化物薄膜的晶粒长大,光学透过率增加;在空气中退火会导致铟锡氧化物薄膜的载流子浓度减少,其表面等离激元共振峰红移;而真空退火则使铟锡氧化物薄膜的载流子浓度增加,共振峰蓝移.这些研究结果可为后续铟锡氧化物表面等离激元材料及器件的研究提供科学依据和实际指导.  相似文献   

11.
Small “particles” of an open surface were formed on a SiC polar crystal with openings in the opaque metal mask covering the sample. The dimensions of the holes were about surface phonon polariton wavelength. Such a sample was irradiated with an electromagnetic wave ( λ = 10.68μm) at a frequency close to the lattice resonance of SiC. A significant enhancement in the field amplitude of surface phonon polariton waves was detected over such “particles” compared to the amplitude over an infinite open surface of SiC. Such a phenomenon, observed by us in the IR band, is similar to plasmon resonance on small metal particles in the visible band, but the lateral resolution of the ASNOM used (no worse than 30 nm at 10 μm) makes the obtained field distribution more detailed. The maps of the local field amplitude and phase obtained on SiC surface with ASNOM are in a good quantitative agreement with simulations using the Green’s function.  相似文献   

12.
We analyze the optical response of small-diameter (?1 nm) semiconducting carbon nanotubes under the exciton-surface-plasmon coupling. Calculated optical absorption lineshapes exhibit the significant line (Rabi) splitting ∼0.1-0.3 eV as the exciton energy is tuned to the nearest interband surface plasmon resonance of the nanotube so that the mixed strongly coupled surface plasmon-exciton excitations are formed. We discuss possible ways to bring the exciton in resonance with the surface plasmon. The exciton-plasmon Rabi splitting effect we predict here for an individual carbon nanotube is close in its magnitude to that previously reported for hybrid plasmonic nanostructures artificially fabricated of organic semiconductors deposited on metallic films. We believe this effect may be used for the development of carbon nanotube based tunable optoelectronic device applications in areas such as nanophotonics and cavity quantum electrodynamics.  相似文献   

13.
We demonstrate active manipulating plasmonic signals with metal--nonlinear optical material--metal (M-NL-M) arrays consisting of slits with variant widths. The parameters of the M-NL-M array structure are derived by theoretical analysis of dispersion relationship. The splitting angle can be modulated by the incident light intensity, and verified by a nonlinear two-dimensional finite difference time domain method. The physical principle of this phenomenon is analysed from the phase of surface plasmon polaritons and Fabry--Pérot (F-P) resonance in slits  相似文献   

14.
熊志成  朱丽霖  刘诚  高淑梅  朱健强 《物理学报》2015,64(24):247301-247301
设计了一种带有纳米天线的金属微腔结构, 以实现高强度表面等离子的定向激发. 在利用双狭缝结构实现表面等离子体波定向激发的基础上, 分别结合共振增强和干涉相长原理, 在传统结构的入射端面上添加纳米天线结构, 并增加狭缝通道数, 实现了定向激发的表面等离子体波的能量增强. 基于纳米天线的多通道高强度定向表面等离子体波激发装置结构简单, 系统紧凑, 并能够有效提高定向传播的表面等离子体波的能量密度和传播距离, 其对微纳光学传输和高密度光学集成领域等方面的研究具有重要意义.  相似文献   

15.
Plasmonic nanoparticles (NPs) have been reviewed herein for their fascinating optical properties in a wide spectral range and for their various applications. The surface plasmon resonance (SPR) bands of metal NPs can be tuned from visible to near infrared region by varying the shape of the metal NPs. As a result, the tuning of the SPR band over a spectral range is possible by making plasmonic NPs of different shapes. This review emphasizes fundamental studies of plasmonic NPs and nanocomposites with well-defined and controlled shapes that have several analytical applications such as molecular detection and determination in different fields. This review describes how oxidative etching and kinetic control can be utilized to manipulate the shape and optical properties of NPs. This review also describes the specific examples of the sensing applications of the localized surface plasmon resonance studies in which the researchers use both wavelength shift and surface-enhanced Raman scattering sensing to detect the molecules of chemical and biological relevance. The review ends with a perspective of the field, identifying the main challenges to be overcome and suggesting areas where the most promising developments are likely to happen in future.  相似文献   

16.
Absorbing and emitting optical properties of a spherical plasmonic nanoantenna are described in terms of the size dependent resonance frequencies and damping rates of the multipolar surface plasmons (SP). We provide the plasmon size characteristics for gold and silver spherical particles up to the large size retardation regime where the plasmon radiative damping is significant. We underline the role of the radiation damping in comparison with the energy dissipation damping in formation of receiving and transmitting properties of a plasmonic particle. The size dependence of both: the multipolar SP resonance frequencies and corresponding damping rates can be a convenient tool in tailoring the characteristics of plasmonic nanoantennas for given application. Such characteristics enable to control an operation frequency of a plasmonic nanoantenna and to change the operation range from the spectrally broad to spectrally narrow and vice versa. It is also possible to switch between particle receiving (enhanced absorption) and emitting (enhanced scattering) abilities. Changing the polarization geometry of observation it is possible to effectively separate the dipole and the quadrupole plasmon radiation from all the non-plasmonic contributions to the scattered light.  相似文献   

17.
A method for formation of bulk plasmonic structures based on porous quartz with silver nanoparticles in pores has been proposed and implemented. The spectroscopy of their optical and nonlinear optical properties has been performed by methods of second harmonic generation and two-photon absorption. A significant increase in the nonlinear absorption coefficient has been detected in the plasmon resonance region. The enhancement of the second optical harmonic has been observed with the shift by tens of nanometers from the plasmon resonance position toward the long-wavelength region.  相似文献   

18.
Li L  Li T  Wang SM  Zhang C  Zhu SN 《Physical review letters》2011,107(12):126804
We report an experimental realization of a plasmonic Airy beam, which is generated thoroughly on a silver surface. With a carefully designed nanoarray structure, such Airy beams come into being from an in-plane propagating surface plasmon polariton wave, exhibiting nonspreading, self-bending, and self-healing properties. Besides, a new phase-tuning method based on nonperfectly matched diffraction processes is proposed to generate and modulate the beam almost at will. This unique plasmonic Airy beam as well as the generation method would significantly promote the evolutions in in-plane surface plasmon polariton manipulations and indicate potential applications in lab-on-chip photonic integrations.  相似文献   

19.
We presented a systematic study of surface enhanced Raman scattering (SERS) fiber sensor with a grid nanostructure. The plasmonic resonance peak is stable when measuring gas and double-resonance plasmon can be effectively excited; meanwhile local electric field can be strongly enhanced with the metal coated nanostructured fiber facet. Studies on the influence of polarization effects, the plasmon resonance wavelength shift is relatively small in our structure.  相似文献   

20.
用全矢量的三维有限差分时域(finite-difference time-domain,简称FDTD)方法,研究了正方形单元结构金属光子晶体平板的增强传输效应以及局域性表面等离子体共振现象.这种增强效应来自于两个不同的等离子体共振机制:由长方形空气孔形成的局域波导共振以及由周期性结构引起的光子晶体共振效应.对于由长方形空气孔形成的局域波导共振模式,其等离子体波全部局域在整个长方形空气孔区域中.而由周期性引起的共振模式,其频率随着金属平板表面周期性的变化而变化,相应的等离子体波分布在长方形空气孔区域的两端.产生的表面等离子体都局域在长方形空气孔区域中,电场强度得到了显著的增强. 关键词: 光子晶体 金属平板 超强透射 表面等离子体  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号