首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel aerosol charger has been developed, which has high efficiency and high throughput especially for nanometer particles in the size range of 3–50nm. Unipolar charging with high ion concentration and long charging time is used to obtain the high charging efficiency. High throughput is achieved by reducing particle loss within the charger. This is accomplished by directing ion flow and aerosol flow in the same direction and by the use of sheath air flow. The charger configuration is of a longitudinal design – the direction of aerosol stream and ion stream are flowing parallel along the longitudinal axis of the charger. The charger consists of four sections: the inlet zone, the ion production zone, the unipolar charging zone, and the exit zone. In the inlet and ion production zones, unipolar ions are generated using Po210 radioactive sources with an electric field designed to separate the positive and negative ions, and to focus the selected unipolar ions into the core region of the charger. The ions with the selected polarity is then attracted to the charging zone by an uniform electric field created by a series of ring electrodes applied with a linear ramped voltage. Aerosol entering the charger is sheathed with clean gas flow in order to keep the aerosol in the core region. A novel exit design with a reversed electric field is incorporated in order to minimize the charged particles loss. The performance of the charger is first evaluated using computer simulation and then constructed for experimental validation. Experiment data have demonstrated that the charger achieves 90% and 95% charged-particles penetration efficiency and with 22% and 48% extrinsic charging efficiency at 3 and 5nm particle sizes, respectively. These performance data represent significant improvement, over a factor of 10, compared with the existing chargers.  相似文献   

2.
In this paper, we report the development of a novel unipolar charger for nanoparticles, a system that achieves low particle loss and high charging efficiency without the use of sheath air. The efficient unipolar charging of the system is realized mainly by the surface-discharge microplasma unit, a device previously applied with good success to the neutralization or charging of submicron particles [Kwon et al., 2005, Aerosol Sci. Technol., 39, 987–1001; 2006, J. Aerosol Sci., 37, 483–499]. The unipolar charger generates unipolar ions using the surface discharge of a single electrode with a DC pulse supply. This marks an advance from our previous method of generating bipolar ions with the use of dual electrodes in earlier studies. We evaluated the efficiency of the penetration (or loss) and charging of nanoparticles in the size range of 3–15 nm, then compared the charging efficiencies measured with those predicted by diffusion charging theory. More than 90% of inlet nanoparticles penetrated the charger (less than 10% of the particle were lost) without the use of sheath air. Other chargers have only realized this high penetration efficiency by relying on sheath air flow. Moreover, the measured charging efficiencies agreed well with those predicted by diffusion charging theory and were somewhat higher and more size-dependent than the charging efficiencies of other nanoparticle chargers.  相似文献   

3.
《Journal of Electrostatics》2006,64(3-4):203-214
A methodology is proposed for the measurement of a number of parameters relevant to the performance evaluation of aerosol corona chargers. These parameters are intrinsic and extrinsic charging efficiencies, and diffusion and electrostatic particle losses. The methodology is essentially the same as that used in earlier works, except that free ions are removed just after the charger outlet in order to minimize the extent of possible after-charging effects which might lead to measurement errors. However, the experimental results show that after-charging is negligible and that, consequently, practically all the effective ion–particle collisions take place before the aerosol leaves the charger. Formation of new particles during corona discharge, which could in principle be an additional cause of measurement error, has not been observed in the working voltage range of the charger. Particle diffusion and electrostatic losses have been measured at varying values of the voltage applied to the charger: for a given particle size, diffusion loss decreases and electrostatic loss increases as the charger voltage is increased. The intrinsic charging efficiency increases with particle size and charger voltage. In contrast, the extrinsic charging efficiency, which is the parameter of importance in practice, attains a maximum value for a given charger voltage in such a manner that this optimum voltage depends on particle size.  相似文献   

4.
Three types of unipolar chargers (parallel multi-electrodes, single electrode, and single electrode with compact size) using the soft X-ray were constructed and their charging performance was evaluated by measuring positive, negative, and neutral fractions of size-resolved ultrafine particles (20–100 nm) with the Tandem Differential Mobility Analyzer (TDMA) technique. The unipolar charger with a single electrode and compact size showed the highest charge fraction with least particle loss probably due to lower electrostatic loss of ions among tested chargers. With positive voltage applied to electrode to remove negative ions, we found that the positively charged particles were 43, 52, 62, 69, and 75% for 20, 30, 50, 70, and 100-nm particles, respectively, and a few particles were negatively charged although their fraction increased with size (1, 2, 4, 5, and 6% for 20, 30, 50, 70, and 100-nm particles, respectively). The positive charge fractions were about three times higher than the values estimated theoretically from a bipolar charger. Also, based on comparison of current data with previously reported values using corona discharge unipolar charger, the soft X-ray charger showed better performance in terms of charging efficiency and penetration for particles (NaCl) currently tested in the particle size range of 20–100 nm.  相似文献   

5.
Sonic jet chargers have originally been used in aerosol measurement devices for particle charging and neutralization. Here, our goal was to study if this charger type could be used in particle control devices in which particle concentrations and gas volumes are much higher. The study includes charging efficiency tests in a laboratory and with a commercial 20 kW wood pellet burner. Actual particle removal efficiency was tested with a laboratory scale parallel plate electrostatic collector. The results show that sonic jet-type chargers also have potential in filtering applications.  相似文献   

6.
A new unipolar charger for aerosol nanoparticles has been developed. In this twin Hewitt charger two corona discharge zones are connected by a charging zone where the nanoparticle aerosol flows. Ions move into the charging zone alternating from each corona discharging zone by means of a square-wave voltage. The operation parameters of the device have been experimentally investigated at standard conditions with the goal to optimize the extrinsic charging efficiency in N2 carrier gas. It has been found that there exists an optimal length of the charging channel for each gas flow rate through the charger which minimizes losses of charged particles and at the same time having a sufficient large n iont-product. Extrinsic charging efficiencies of some 30% for particles with a diameter of 10 nm are obtained.  相似文献   

7.
A cylindrical triode charger for unipolar diffusion charging of aerosol particles was designed, constructed, and evaluated. The corona discharge characteristics were studied in this cylindrical triode charger. For the process the current–voltage characteristics were determined, as were the ion number concentration, the nit product, and the mean charge per particle as a function of particle diameter. The discharge and charging currents, and ion number concentration in the charging zone of the charger increased monotonically with corona voltage. The negative corona had a higher current than the positive corona. At the same corona voltage, the ion number concentration in the discharge zone was larger than the charging current for positive and negative coronas, with values of about 197 and 32 times and 645 and 99 times for the ion-driving voltages of 0 and 310 V, respectively. The average ion penetration for positive and negative coronas was 0.64 and 0.19% and 3.62 and 1.93% for the ion-driving voltages of 0 V and 310 V, respectively. The higher flow rate, shorter residence time, gave a lower Nit product. By calculation 14% of charged particles of 10 nm in diameter were lost to the outer cylinder because of the electrostatic field effect. The charger does not use a sheath of air flow along the walls or the perforated screen opening, it has low diffusion and space charge losses due to the short column charging zone, and is a low complexity and inexpensive system. It worked as well as more sophisticated and expensive commercially available chargers.  相似文献   

8.
Recent studies have raised concerns over applicability of the conventional charging theories to non-spherical particles such as soot aggregates and single-walled carbon nanotube aerosols of complex shape and morphology. It is expected that the role of particle structure and shape on particle diffusion charging characteristics may be significant in the submicron size range for carbon nanotubes (CNTs) and nanofibers (CNFs). In this study, we report experimental data on equilibrium charging characteristics of high-aspect ratio aerosol particles such as CNFs and multi-walled CNTs (MWCNTs) when exposed to a bipolar ion atmosphere. A neutral fraction was measured, i.e., the fraction of particles carrying no electrical charge. A differential mobility analyzer (DMA) was used to classify aerosols, leaving a bipolar radioactive charger to infer the bipolar charging characteristics at different mobility diameters in the submicron size range. The measured neutral fractions for CNF aerosol particles were lower than the corresponding Boltzmann values by 24.4%, 42.0%, and 45.8% for mobility diameters of 400 nm, 600 nm, and 700 nm, respectively, while the neutral fractions for measured aerodynamic diameters of 221 nm, 242 nm, and 254 nm were much lower than those expected by Boltzmann charge distribution, by 43.8%, 63.1%, and 67.3%, respectively. Neutral fractions of spherical particles of polystyrene latex (PSL) and diethylhexyl sebacate (DEHS) particles, measured under identical experimental conditions and procedure, agreed well with the Boltzmann charge distribution. The measured neutral fractions for MWCNT aerosol particles were lower than the corresponding Boltzmann values by 22.3%–25.0% for mobility diameters in the size range from 279 nm to 594 nm. Charging-equivalent diameters of CNF particles correlated well with either mobility diameter or equal-area diameter, which were found to be larger than their mobility or equal-area diameters by up to a factor of 5 in the size range of 400 nm–700 nm, while those of MWCNT particles were larger than the corresponding diameters by a factor of 2 in the size range of 279 nm–594 nm.  相似文献   

9.
Charge distribution characteristics were investigated for nanoparticles synthesized in a diffusion flame aerosol reactor. The nanoparticles considered were pristine TiO2 and Cu–TiO2, with Cu dopant concentrations ranging from 1 to 5 wt% with particle size from 25 to 60 nm. In situ measurements were conducted by integrating a tandem differential mobility analyzer (TDMA) experimental setup with the flame aerosol reactor. A charging model was used to identify the important parameters that govern the two charging mechanisms (diffusion and thermo-ionization) in the flame and their relative importance at different operating parameters. The results indicate that TiO2 and Cu–TiO2 nanoparticles carry single as well as double unit charges. The charged fraction depends on particle size as well as on dopant concentration. The charged fraction increased with increasing particle size and decreased with copper dopant concentration. Measured charged fractions were similar for both the polarities at different mobility diameters. Based on the flame operating parameters, the calculations indicate that diffusion charging is dominant in the flame, which is consistent with the experimental results.  相似文献   

10.
Charging of aerosol droplets and solid particles is applied in many industrial processes such as electrostatic painting, particle separation and electrostatic precipitation. In most of charging devices, electrical discharges are used as a source of ions, which are deposited onto the particles. In the present paper, the charging process by ionic current in alternating electric field was optimized experimentally. Alternating electric field charger was used as a charging device in these experiments. The current voltage characteristics of electrical discharge in this device, and the charge imparted to the particles were determined. The level of charge was measured at the outlet of the charger and was compared to the Pauthenier limit for different supply voltages, and frequencies. MgO powder was used as a source of particles in these experiments. It was noticed that higher supply voltage of the charger gives higher level of particle charge, but at the same time, the particle deposition on the charger elements was increased, decreasing the particle penetration. A compromise between these two tendencies is therefore necessary. As a result we have proposed a criterion maximizing the total charge born by the particles which is a product of relative particle charge and particle penetration.  相似文献   

11.
In this paper, charging kinetics of polydisperse aerosol particles in a corona field of a coaxial electrode system is numerically analyzed for a logarithmic normal distribution of aerosol particle size. The particle charging and the particle current are calculated by using a charging model considering ion concentration and particle mobility. Particle charging profiles under varying ion density and electrical field intensity distributions of the charging chamber were revealed. A low charging profile in the transition region of bipolar corona field was demonstrated in the simulation results.  相似文献   

12.
The performance of an electrical aerosol detector (EAD; TSI Model 3070A) was experimentally evaluated for measuring the integral parameters of particles (i.e., total length concentration of particles, and the total surface area concentrations of particles deposited in a human lung). The EAD consists of a unipolar diffusion charger with an ion trap, and aerosol electrometer. We first evaluated the performance of the EAD charger. Both polydisperse and monodisperse particles of Ag, NaCl, and oleic acid (with the dielectric constants of infinite, 6.1 and 2.5) were then generated to evaluate the particle material effect on the EAD readout.  相似文献   

13.
A Direct Simulation Monte Carlo (DSMC) technique is applied for describing the dynamics of aerosol charging. The method is based on the transformation of known combination coefficients into charging probabilities. Changes in the particle charge distribution are computed as a stochastic game, calculating the time-step after each event. The simulations are validated by comparison with analytical solutions for unipolar aerosol diffusion charging and aerosol photocharging. The advantage of the DSMC method lies in the uncomplicated simulation of multi-dimensional systems that would result in very elaborate population balances. The DSMC method is used for simulation of the photocharging of moderately concentrated bicomponent polydisperse aerosols. By means of this method, the influence of the particle parameters (size, material) on the dynamics of the charge distribution in different size and material fractions has been studied. It is shown that charge separation between size or material fractions can be achieved for aerosol components with dissimilar work functions, while the total aerosol charge is zero.  相似文献   

14.
In this paper, the corona discharge characterization in terms of current–voltage relationships of a unipolar cylindrical tri-axial charger on the effects of the corona wire diameter and length have been experimentally studied and discussed. A commercial computational fluid dynamics software package, COMSOL Multiphysics™, was used to predict the electric field distribution in the ion generation and charging zones of the charger and the ion penetration through the perforated screen opening on the inner electrode of the charger. It was found from experimental results that both positive and negative charging currents in the charging zone of the charger increased with increasing corona and ion-driving voltages. At the same corona and ion-driving voltages, both positive and negative coronas were decreased with increasing diameter of the corona-wire. Compared with the corona-wire of 22 mm in length, the magnitude of both positive and negative charging currents were markedly higher for corona-wire of 11 mm in length at the same corona voltage. It was found that the charging currents for negative coronas were about 1.2 times higher than those positive coronas at the same corona and ion-driving voltages. Numerical results of the electric field distribution and the ion and charged particles migrations in the discharge and charging zones of the charger is correlated to have the same direction with the experimental results of the current–voltage relationships. Also, this can be used to guidance in describing the electric field distribution and the behavior of ion and charged particle trajectories that cannot be seen from experiments in order to improve the applicably design and refinement of a unipolar cylindrical tri-axial charger.  相似文献   

15.
This in vitro study investigated electrically charging effect on the deposition of inhaled workplace anthropogenic pollutant particles (APP) in a hollow throat cast model. Many occupational lung diseases are associated with exposure to workplace dust particles and other pollutants. Since the human throat is an effective filter, this study devised a novel idea of charging particles, and studying their deposition in the throat. Simulated workplace aerosol particles were generated from a commercially available nebulizer, and charged by a corona charger. Charged and uncharged particles were allowed to pass through a polyester resin cast of cadaver based throat, a replicate of a human oropharyngeal region. The aerosol particles' size and charge distribution were characterized by an Electronic Single Particle Aerodynamic Relaxation Time (ESPART) analyzer before and after passing the throat cast. The ESPART operates on the principle of Laser Doppler Velocimetry to measure simultaneously aerodynamic diameter and electrostatic charge on a single particle basis and in real time. The study results revealed that electrically charging increased agglomeration of smaller particles and increased deposition. Deposition of charged particles increased with increasing particle size which can be explained as the effect of inertial impaction.  相似文献   

16.
A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.  相似文献   

17.
The size distribution of natural occuring aerosol particles with radii from 10?6 to 10?5 cm was measured by investigation of the distribution of thoron decay products on the mobility spectrum. In addition we used an artifical ionization of the particles traversing a corona discharge. Thus the efficiency of the mobility spectrometer could be increased by a factor of four (as a function of corona current). The electrical charge distribution on the particles having passed the corona is out of equilibrium. Therefore the mobility spectrum can be reduced to a size spectrum only by means of an experimentally determined calibration function.  相似文献   

18.
Inhalation toxicology studies generally use the Brunauer, Emmett, and Teller (BET) gas adsorption method to measure total surface area of particles whereas occupational exposures are more readily measured by real-time mobility-based surface areas or active surface area measured with diffusion charger-based instruments. Three surface area measurement methods were studied: filter-based inert gas adsorption (BET method), diffusion charging, and mobility-based methods. The goal of the project was to investigate and develop a correlation between the measurement methods. The experimental design consisted of measuring surface area in a series of five trials for each of two powder types, fine and ultrafine titanium dioxide with primary particle sizes of 440 and 20 nm, respectively, and two aerosol concentrations. Diffusion charger instruments tended to underestimate the total particle surface area measured by the BET, but were well correlated with mobility-based surface areas obtained from a scanning mobility particle sizer. Filter-based gas adsorption methods and diffusion charging methods provide different but valuable information on total and active surface areas of particles, respectively. Results indicate they should not be used as predictors of one another.  相似文献   

19.
The experimental efficiency was numerically and experimentally studied for collecting negative and positive ions in a coaxial cylindrical electrostatic collector for a mini-volume electrical PM detector. The commercial computational fluid dynamics software package COMSOL Multiphysics™ was used to predict the behaviors of the flow and electric fields as well as the particle trajectories in the collecting zone of the ion collector. In the experiment, the ions were generated by a corona-needle ionizer with concentrations greater than 1013 ions/m3, the positively and negatively applied voltages at the inner electrode ranged from 0 to 45 V and the ion flow rates ranged from 1 to 5 L/min. For these ion flow rates, 1–5 L/min, the ion precipitates due to space charge and diffusion effects ranged from 92 to 97 % for positive ions and 91–97 % for negative ions. The total collection efficiency of the collector increased to 100% at collection voltages larger than 5, 20 and 40 V respectively for the ion flow rates of 1, 3 and 5 L/min for both positive and negative ions. Numerical calculation results of the ion trajectory in the collecting zone of the collector; showed good agreement with the experimental results of the total collection efficiency and can be used to support the bettering of designing in order to refine an ion collector after the charger or ionizer in a mini-volume electrical aerosol detector. Finally, this shows that this ion collector was proven to be particularly useful as an electrostatic collector for positive and negative ions after the charger or ionizer in a mini-volume electrical aerosol detector.  相似文献   

20.
A nanoparticle charging model considering simultaneous diffusion, direct photoionization and thermionization charging was developed. The model included a balance expression for the positive and negative ions, and one for each charge level of the particles. Three comparable parameters: attachment coefficient, β±(v,q), photoelectric yield coefficient, α+(v,q), and thermionic yield coefficient, γ+(v,q), were identified that govern different charging mechanisms. By comparing these parameters, the importance of different mechanisms was explored. Analytical (closed-form) solutions under certain unipolar and bipolar conditions were proposed. Literature reported experimental data on a soft-X-ray based unipolar charger was used to verify this model and fair agreement was achieved. A numerical algorithm was developed to solve the governing equations for a soft-X-ray enhanced electrostatic precipitator (ESP) system. The role of soft-X-ray irradiation at improving nanoparticle average charge and enhancing the ESP capture efficiency was demonstrated. Experimental tests with this system were also conducted. Measured capture efficiency showed excellent agreement with theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号