首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

2.
A novel series of 4,4′-bipyridine- and 1,2-bis(4-pyridyl)ethane-Cu(II) complexes were synthesized using a variety of amine ligands (DPA = di(2-pyridylmethyl)amine, Medpt = 3,3′-diamino-N-methyldipropylamine, Hbpca = bis(2-pyridylcarbonyl)amine, TPA = tris(2-pyridylmethyl)amine) and cyclen = 1,4,7,10-tetraazacyclododecane). Different complexes were obtained including mononuclear [Cu(cyclen)(4,4′-bipy)](ClO4)2 (1), dinuclear {[Cu(μ2-bpca)(4,4′-bipy)(H2O)]ClO4}2 (2), [Cu2(DPA)22-4,4′-bipy)(ClO4)4)]·H2O (3), [Cu2(cyclen)22-bpe)](ClO4)4 (4) and [Cu2(TPA)22-bpe)](ClO4)4 (5) and the 1-D polymer, {[Cu(Medpt)(μ2-4,4′-bipy)](ClO4)2}n (6). In the 16 samples, cooling up to 100 K produces only the expected, minor, changes in cell constants given no space group changes. Therefore, data for the 100 K structures are reported only. Single-crystal X-ray crystallography reveals the monodentate coordination of the 4,4′-bipy in 1 and 2, and the bridged nature of the di-pyridyl ligands in the dinuclear complexes 25 and in the polymeric complex 6. In this series, structures 36 consist of the 4,4′-bipy or bpe bridging the two Cu(II) centers, the coordination by the tri- or the tetra-N donors of the amine, and the ClO4? groups as counter ions in 46 complexes. In the complexes 36, the Cu···Cu distances across the bridged di-pyridyl ligands were found to be greater than 11 Å. The magnetic properties of complex 3 reveal no evidence for magnetic coupling between the two Cu(II) centers (J = ?0.58 cm?1).  相似文献   

3.
《Solid State Sciences》2007,9(11):1006-1011
Three complexes, M2(bpy)2(bpdc)2·xH2O [M = Cu, x = 0; M = Zn or Cd, x = 2], have been hydrothermally synthesized by 1,1′-biphenyl-2,2′-dicarboxylic acid (H2bpdc) with 2,2′-bipyridine (bpy) to form binuclear molecules. In each, the two bpdc groups align the two opposing planar [M(bpy)]2+ cations. The molecules are connected by C–H⋯O hydrogen bonds, π–π stacking, and C–H⋯π interactions to form three dimensional supramolecular networks. Furthermore, at room temperature, complex 3 exhibits strong photoluminescence.  相似文献   

4.
Three isonicotinamide (isn) copper(II) complexes with different bridging ligands, azide, thiocyanate and sulfate, have been prepared. The molecular structure of [Cu2(μ-1,1-N3)2(μ-1,3-N3)2(isn)2]n (1) is composed of binuclear species, Cu2(μ-1,1-N3)2(isn)2, inter-connected by additional four azide bridges in the end-to-end mode (1,3). This gives a CuN4N square-pyramidal coordination sphere around each copper(II) ion. A trans mononuclear octahedral coordination sphere CuN4S2 is present in [Cu(μ-N,S-NCS)2(isn)2]n (2), with thiocyanato ligands serving as bridges between the adjacent Cu(isn)2 moieties. The third anionic ligand, i.e. sulfate, in {[Cu(μ-O,O’-SO4)(H2O)(isn)2]·2H2O}n (3) completes the CuO2N2O square-pyramidal coordination sphere, and thus enables bridging between the mononuclear Cu(H2O)(isn)2 moieties. The ligands that bridge the principal building blocks, i.e. binuclear in 1 and mononuclear in 2 and 3, connect the axial ligands with the equatorial positions of the copper(II) coordination spheres in all three cases. A ferromagnetic interaction FM is found for 1, while 2 and 3 are paramagnetic. Therefore, the key structural difference between 1 on one hand, and 2 and 3 on the other, is found in the anionic ligand, serving in 1 also as the intra-binuclear bridge, showing the main path (J1) for the FM interaction. Additionally, the inter-binuclear pathway in 1 gives another contribution (J2) to the whole FM interaction seen herein (J1 = 18.5 cm–1, J2 = 4.9 cm–1).  相似文献   

5.
《Polyhedron》2007,26(9-11):1849-1858
Three compounds composed of phenazine and copper chloride have been prepared and studied by infrared spectroscopy, X-ray diffraction, and variable temperature magnetization. The compounds synthesized and studied are: Cu(phenazine)Cl2 (1), (phenazinium)2CuCl4 · H2O (2), and [Cu(phenazine)Cl2 · H2O]2 (3). Compounds 1 and 2 are described as antiferromagnetic Heisenberg chains with exchange constants ∣J∣/kB = 33.8 K and 8.6 K, respectively.  相似文献   

6.
Two dinuclear molecule-bridged Cu(I) complexes, (μ-bpym)[Cu(PPh3)Cl]2 (1), [(μ-bpym)(CuL)2](ClO4)2·(CH3CN)2(H2O) (2) (bpym = 2,2′-bipyrimidine, L = (R)-(+)-2,2′-bis(diphenylphospho)-1,1′-dinaphthalene) have been synthesized and characterized. The molecular structures of the two new dinuclear compounds exhibit bridging of two copper(I) centers by the symmetrically bis-chelating bpym ligand. Intriguingly, compound 1 features a remarkable “intramolecular organic sandwich” configuration where the central 2,2′-bipyrimidine bridging ligand interacts in π/π/π fashion with two phenyl rings from the coligands above and below the central plane, while chiral compound 2 exhibits second-order nonlinear optical effect and temperature-dependent luminescence. Upon decreasing the temperature from 298 to 10 K, compound 2 shows a red light emission.  相似文献   

7.
《Polyhedron》2005,24(3):397-406
Four 4,4′-bipyridine α,ω-dicarboxylate coordination polymers Cu(bpy)(C5H6O4) (1), Zn(bpy)(C5H6O4) (2), Zn(bpy)(C6H8O4) (3) and Mn(bpy)(C8H12O4) · H2O (4) have been synthesized and structurally characterized by single crystal X-ray diffraction methods (bpy = 4,4-bipyridine, (C5H6O4)2− = glutarate anion, (C6H8O4)2− = adipate anion, (C8H12O4)2− = suberate anion). Their crystal structures are featured by dimeric metal units, which are co-bridged by 4,4′-bipyridine ligands and dicarboxylate anions such as glutarate, adipate and suberate anions to generate 2D layers with a (4,4) topology in 1, 2 and 4 as well as to form 3D frameworks in 3. Two 3D frameworks in 3 interpenetrate with each other to form a topology identical to the well-known Nb6F15 cluster compound. Over 5–300 K, the paramagnetic behavior of 4 follows the Curie–Weiss law χm(T  Θ) = 4.265(5) cm3 mol−1 with the Weiss constant Θ = −6.3(2) K. Furthermore, the thermal behavior of 3 and 4 is also discussed.  相似文献   

8.
《Polyhedron》2005,24(16-17):2242-2249
Two heterobimetallic coordination polymers, [Cu(2,4-pydc)2Mn(H2O)4]x (1) and [Cu(2,5-pydc)2Mn(H2O)2]x · 4xH2O (2), have been synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds have extended 2-D sheet structures. In 1 the copper centers are linked in chains by double ligand bridges and these chains are cross-linked through the manganese coordination spheres and O–C–O bridges to form polymeric sheets. In 2 separate O–C–O bridged Cu and Mn chains are connected in an alternating array by additional ligand bridging to generate the overall 2-D structure. Analysis of magnetic data of 1 reveals that ferromagnetic exchange between the O–C–O bridged copper and manganese centers dominates the magnetic properties of this system. The magnetic data for 2 fit well to a model incorporating antiferromagnetic exchange in independent S = 1/2 and S = 5/2 linear chains with J(Cu) = −0.073 cm−1 and J(Mn) = −0.32 cm−1. Unlike the situation in 1, there is no evidence for heterometallic exchange. In both 1 and 2 the significant exchange occurs via O–C–O bridges. To study the effect of thermal dehydration on the magnetic properties of these systems, the compounds Cu(2,4-pydc)2Mn · H2O (1d) and Cu(2,5-pydc)2Mn · H2O (2d) were synthesized and studied.  相似文献   

9.
New luminescent mononuclear and dinuclear copper(II) (S = 1/2) complexes [Cu(HL)(H2O)2](ClO4)2 (1a) and [Cu2(HL)2(μ-SO4)2]·2H2O (1b) were synthesized with the acyclic tridentate pyridine-2-carboxaldehyde-2-pyridylhydrazone ligand, HL (1). Interestingly, the mononuclear complex 1a can be converted into the disulfate bridged dimeric copper(II) complex 1b by passing freshly prepared SO2 through the basic medium. On excitation at 290 nm, the ligand fluoresces at 364 nm due to an intraligand 1(π–π1) transition. Upon complexation with copper(II), the emission peak is slightly blue shifted (356 nm, F/F0 0.76 for 1a and 354 nm, F/F0 0.89 for 1b) with a little quenching in the emission intensity. The association constants (Kass (5.06 ± 0.004) × 104 for 1a and Kass (5.46 ± 0.006) × 104 for 1b at 298 K) and the thermodynamic parameters have been determined by UV–Vis spectroscopy. The molecular structure of the complex 1b (Cu?Cu 4.456 Å) has been determined by single crystal X-ray diffraction studies. The complex 1b exhibits a strong interaction towards DNA as revealed from the Kb (intrinsic binding constant) 6.3 × 104 M?1 and Ksv (Stern–Volmer quenching constant) 2.93 values.  相似文献   

10.
《Polyhedron》2001,20(15-16):2063-2072
Two novel complexes of Zn(II) chromate with 2,2′-bipyridine have been synthesised: [Zn(bpy)3]CrO4·7.5H2O (1) and catena-(μ-CrO4-O,O′)[Zn(bpy)(H2O)2]·2H2O (2). Complex 1 has been characterised by a structural method. The [Zn(bpy)3]CrO4·7.5H2O crystals have a monoclinic symmetry with space group C2/c and eight chemical units. The chromate ion is not coordinated to the zinc(II) ion. The O(3) and O(4) atoms of CrO42− and O(8) of the water molecule statistically occupy their position with k=0.5, which means that the chromate ions execute reorientational motion between two equilibrium arrangements with equal probability. 4 K electronic spectra (1) revealed the vibrational fine structure in ν3(F2)=820 cm−1 for the spin-forbidden 1A13T1 transition. The pure electronic 0–0 transition in 1A11T1 was found at 20 270 cm−1. In complex 2 the broad low intensity band at ca. 16 800 cm−1 has been assigned to a forbidden ZnOCr transition in the bridge.  相似文献   

11.
《Solid State Sciences》2007,9(11):1079-1084
Three ZnII coordination polymers with acetate and perchlorate anions, [Zn3(μ-bpa)4.5(AcO)3](ClO4)3·4.26H2O (1), [Zn2(μ-bpe)3(AcO)2](ClO4)2 (2) and [Zn2(bpe)(AcO)4] (3), bpa = 1,2-bis(4-pyridyl)ethane and bpe = 1,2-bis(4-pyridyl)ethene, have been synthesized and characterized by elemental analysis, IR, 1H NMR, and 13C NMR spectroscopies, and the structure of compound 1 was determined by single-crystal X-ray diffraction. The thermal stabilities of compounds 13 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The structural studies of compound 1 show that the structure may be considered as a three-dimensional coordination polymer of zinc(II) with large voids filled with disordered water molecules. The stability of the porous networks after removal of the guest water molecules is confirmed by X-ray powder diffraction.  相似文献   

12.
13.
《Tetrahedron: Asymmetry》2006,17(13):1937-1943
The two enantiomers of [Ru(bpy)3][Mn2(ox)3] (bpy = 2,2′-bipyridine, ox = oxalate), namely [(Δ)-Ru(bpy)3][(Δ)-Mn2(ox)3], (Δ-1) and [(Λ)-Ru(bpy)3][(Λ)-Mn2(ox)3], (Λ-1), were obtained as single crystals using [(Δ)-Ru(bpy)3]2+ and [(Λ)-Ru(bpy)3]2+, respectively, as a chiral templating cation. Their structures were determined by single-crystal X-ray diffraction. The compounds crystallise in the enantiomeric chiral cubic space groups, P4332 (Δ-1) and P4132 (Λ-1), with a = 15.492(2) and 15.507(2) Å, respectively (Z = 4). Both structures include a three-dimensional 10-gon 3-connected (10,3) anionic network wrapped around the [Ru(bpy)3]2+ cations. In both crystalline enantiomers, the resolved ruthenium template cation imposes both the topology and the absolute configuration of all the metal centres. The thermal variation of the magnetic susceptibility, measured on Δ-1 and Λ-1 crystals, reveals an antiferromagnetic coupling between the oxalate-bridged manganese ions in the paramagnetic region characterised by a negative Weiss constant Θ = −35 K. Below TN = 13 K, Δ-1 and Λ-1 exhibit a canted antiferromagnetic order.  相似文献   

14.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

15.
The reaction of salicylaldoxime (H2salox) with Mn(ClO4)2 · 6H2O, NaN(CN)2 and NEt3 in MeOH affords a MnIII6 hexanuclear complex of [Mn6O2(salox)6(MeOH)6(NCNCONH2)2] (1), while reaction of H2salox with MnCl2 · 4H2O and NEt4OH in EtOH affords a MnIII6 hexanuclear complex of [Mn6O2(salox)6(EtOH)4(H2O)2Cl2] (2). Both complexes 1 and 2 contain a [MnIII63-O)2]14+ core, which is a known structural type in the family of Mn6 complexes. Variable temperature magnetic susceptibilities and magnetization measurement of complexes 1 and 2 have been carried out. Exchange interactions of metal centers for complexes 1 and 2 are fitted by a full diagonalization matrix method. The fitting results indicate that both complexes 1 and 2 have the ground-state spin value of S = 4, and the ground state of complex 1 has the much closer energy to low-lying spin states than that of complex 2. Magnetization measurements at 2.0–4.0 K and 10–70 kG confirm that the ground state is S = 4, with significant magnetoanisotropy as gauged by the D value of ?0.82 cm?1 and ?1.18 cm?1, for 1 and 2, respectively. The frequency dependence of the out-of-phase component in alternating current magnetic susceptibilities for both complexes 1 and 2 indicates the slow magnetic relaxation of superparamagnetic behaviour with a Ueff of 27.0(1) K and τ0 = 3.8(2) × 10?9 s for complex 1, and Ueff of 25.1(6) K and τ0 = 4.6(1) × 10?8 s for complex 2.  相似文献   

16.
The syntheses and characterization of six copper(II) complexes of 2-benzoylpyridine benzhydrazone in the form of [Cu(BPB)2], [Cu(BPB)Cl]·H2O, [Cu(BPB)Br], [Cu2(BPB)2](ClO4)2·4H2O, [Cu(BPB)N3]·H2O, and [Cu(BPB)NCS]·H2O·CH3OH are reported. The analytical methods used for the characterization of complexes include partial elemental analyses, IR, electronic and EPR spectra, conductivity measurements, magnetic susceptibility measurements and single crystal X-ray diffraction. From the crystal structure, it is clear that the hydrazone adopts the E conformation about the azo bond to attach to the metal through the Npy–Nazo–O chelating system. In the EPR spectra of complexes in DMF at 77 K four hyperfine quartets in the parallel region could be resolved and a half field signal is observed at 1500 G for complex [Cu2(BPB)2](ClO4)2·4H2O in polycrystalline state at 298 K which gives evidence for its binuclear nature indicating a weak interaction between the two Cu(II) ions.  相似文献   

17.
Dinuclear ruthenium(I,I) carboxylate complexes [Ru2(CO)4(μ-OOCR)2]n (R = CH3 (1a), C3H7 (1b), H (1c), CF3 (1d)) and 2-pyridonate complex [Ru2(CO)4(μ-2-pyridonate)2]n (3) catalyze efficiently the cyclopropanation of alkenes with methyl diazoacetate. High yields are obtained with terminal nucleophilic alkenes (styrene, ethyl vinyl ether, α-methylstyrene), medium yields with 1-hexene, cyclohexene, 4,5-dihydrofuran and 2-methyl-2-butene. The E-selectivity of the cyclopropanes obtained from the monosubstituted alkenes and the cycloalkenes decreases in the order 1b > 1a > 1d > 1c. The cyclopropanation of 2-methyl-2-butene is highly syn-selective. Several complexes of the type [Ru2(CO)4(μ-L1)2]2 (4) and (5), [Ru2(CO)4(μ-L1)2L2] (L2 = CH3OH, PPh3) (6)–(9) and [Ru2(CO)4(CH3CN)2(μ-L1)2] (10) and (11), where L1 is a 6-chloro- or 6-bromo-2-pyridonate ligand, are also efficient catalysts. Compared with catalyst 3, a halogen substituent at the pyridonate ligand affects the diastereoselectivity of cyclopropanation only slightly.  相似文献   

18.
The synthesis, structures and magnetism of the complexes [FeII(3-bpp)2][bpmdcK](SeCN)1.7(ClO4)1.3·MeOH·H2O (1), [FeII(3-bpp)2]4[bpmdcH2(H2O)2](ClO4)10·7H2O·3MeOH (2) and cis-[FeII2(NCSe)2((3,5-Me2pz)3CH)2(μ-bpmdc)]·2MeCN (3) (where 3-bpp = 2,6-di(pyrazole-3yl)pyridine, bpmdc = N,N′-bis(4-pyridyl-methyl)diaza-18-crown-6) and (3,5-Me2pz)3CH = tris(3,5-dimethylpyrazole)methane, are presented. These compounds form a study of the supramolecular influence of host–guest/crown-ether interactions and cation-to-crown hydrogen-bonding effects upon d6 spin transitions, the latter occurring above, or near to, room temperature in 1 and 2. Desolvation effects also influence the T1/2 values. The dinuclear compound 3 contains covalent pyridyl (crown) N to Fe bridge bonding and remains high spin.  相似文献   

19.
Preliminary proliferation assays in human tumor cervix line HeLa, using the coordination compound [Cu(pdto)H2O]2+ (pdto = 1,8-bis-(2-pyridyl)-3,6-dithiaoctane) and its precursors Cu(NO3)2 · 2.5H2O and pdto, were carried out. The results showed that the copper complex has a behavior similar to that of the reference drug cis-platin. No biological activity for the non-coordinated ligand and the copper salt was found. It was established by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy, that the complex [Cu(pdto)H2O]2+ presents an electrochemical reversible Cu(II)/Cu(I) reduction, in acetonitrile solution, meanwhile, the copper salt Cu(NO3)2 · 2.5H2O exhibited an electrochemical irreversible behavior. A comparison between biological and electrochemical results corresponding to [Cu(pdto)H2O]2+ and Cu(NO3)2 · 2.5H2O let us to proposed, the electrochemical reversibility, as one important factor in the antitumoral activity of the copper complex. Due to the nature of the studies presented in this work, other factors like intercalation properties with DNA cannot be neglected in the antitumoral activity of the complex.  相似文献   

20.
The new double-Schiff-base ligand H6ipa-bhea has been synthesized by condensation of a 4,6-diformylresorcinol derivative (ipa) with two equivalents of N,N-bis-(2-hydroxyethyl)ethylenediamine (bhea). Reaction with copper(II) perchlorate leads to the formation of two different products depending on the reaction conditions. The directed synthesis of either a mononuclear or dinuclear copper(II) complex is reported. The reaction in methanol results in the formation of a dinuclear complex [Cu2(H4ipa-bhea)](ClO4)2 (1). Whereas in the presence of water as solvent for the reaction, one imine side chain of the ligand is hydrolyzed regenerating the formyl moiety with the mononuclear complex [Cu(H3hyforsa-bhea)]ClO4 · 2H2O (2) as final product. Subsequent reaction of complex 2 with N,N-bis-(pyridin-2-ylmethyl)ethylenediamine (unspenp) as additional amine component results in the formation of the mononuclear complex [Cu(Hhyforsa-unspenp)]ClO4 (3). All complexes are characterized by IR spectroscopy, elemental analysis and X-ray crystallography. Temperature-dependent magnetic measurements on the dinuclear complex indicate weak antiferromagnetic exchange interactions between the copper(II) ions with a coupling constant of J = ?16.4 cm?1. Density functional calculations have been used to evaluate the magnetic properties. The exchange coupling constant can be nicely reproduced with the use of the broken symmetry approach. The exchange pathway through the meta-phenylene-linkage is discussed in terms of a competitive spin-polarization and superexchange mechanism as well as geometrical changes at the copper(II) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号