首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The plane-parallel flow past an infinitely long circular cylinder becomes three-dimensional starting with Reynolds numbers Re ≈ 190. The corresponding instability mode is called mode A. When Re ≈ 260, vortex structures with a smaller cross scale are formed in the wake as a result of a secondary three-dimensional instability (mode B). The transition to three-dimensionality for a short cylinder bounded by planes is considered. The length of the cylinder is chosen to eliminate the unstable perturbations of mode A. Two instability modes similar to modes A and B modified under the effect of the bounding lateral planes are found. The problems of three-dimensional flow are numerically solved using the Navier-Stokes equations.  相似文献   

3.
The no‐slip condition is an assumption that cannot be derived from first principles and a growing number of literatures replace the no‐slip condition with partial‐slip condition, or Navier‐slip condition. In this study, the influence of partial‐slip boundary conditions on the laminar flow properties past a circular cylinder was examined. Shallow‐water equations are solved by using the finite element method accommodating SU/PG scheme. Four Reynolds numbers (20, 40, 80, and 100) and six slip lengths were considered in the numerical simulation to investigate the effects of slip length and Reynolds number on characteristic parameters such as wall vorticity, drag coefficient, separation angle, wake length, velocity distributions on and behind the cylinder, lift coefficient, and Strouhal number. The simulation results revealed that as the slip length increases, the drag coefficient decreases since the frictional component of drag is reduced, and the shear layer developed along the cylinder surface tends to push the separation point away toward the rear stagnation point so that it has larger separation angle than that of the no‐slip condition. The length of the wake bubble zone was shortened by the combined effects of the reduced wall vorticity and wall shear stress which caused a shift of the reattachment point closer to the cylinder. The frequency of the asymmetrical vortex formation with partial slip velocity was increased due to the intrinsic inertial effect of the Navier‐slip condition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Stable and accurate spectral element methods for predicting the flow of branched polymer melts past a confined cylinder are presented. The fluid is modelled using a modification of the pom–pom model known as the extended pom–pom (XPP) model. Steady and transient flows are considered in this paper. The operator integration factor splitting technique is used to discretize the governing equations in time, while the spectral element method is used in space. An iterative solution algorithm that decouples the computation of velocity and pressure from that of stress is used to solve the discrete equations. Appropriate preconditioners are developed for the efficient solution of these problems. Local upwinding factors are used to stabilize the computations. Numerical results are presented demonstrating the performance of the algorithm and the predictions of the model. The influence of the model parameters on the solution is described and, in particular, the dependence of the drag on the cylinder as function of the Weissenberg number.  相似文献   

5.
Numerical solutions of the unsteady Navier-Stokes equations are presented for the two dimensional flow about a cylinder immersed in a simple shear flow by using the integrodifferential formulation. Selected numerical results for Reynolds numbers 40 and 80 shear parametersK=0.1 and 0.2 are presented and compared with finite-difference results. Plots of streamlines and equi-vorticity lines and time histories of lift, drag, stagnation point and separation angles are given. It was found that two separation bubbles exist periodically behind the lowvelocity side of the cylinder; a main bubble and a secondary one, while there is only one bubble behind the high-velocity side. Numerical results showed that the lift force acts in the direction towards the low-velocity side of the free stream and its magnitude varies periodically with the nondimensional time. In addition, the magnitude of the lift force is approximately proportional to the shear parameterK.
Numerische Studie einer viskosen Scherströmung hinter einem Zylinder unter Verwendung eines Integral-Differential-Verfahrens
Zusammenfassung Es werden numerische Lösungen der instationären Navier-Stokes Gleichungen für eine zwei-dimensionale Strömung um einen Zylinder mitgeteilt. Der Zylinder ist einer einfachen Scherströmung ausgesetzt. Zur Lösung wird ein integral-Differential-Verfahren verwendet. Es werden ausgewählte Ergebnisse für Reynolds-Zahlen zwischen 40 und 80 sowie für die ScherparameterK= 0,1 und 0,2 dargestellt. Die Ergebnisse werden mit Resultaten aus einer finiten Differenzenmethode verglichen. Weiterhin werden die Stromlinien, die Linien gleicher Geschwindigkeit und der zeitliche Verlauf von Auftriebskraft und Widerstandskraft sowie die Bewegung des Staupunktes und des Ablösepunktes graphisch dargestellt. Es stellte sich heraus, daß zwei Ablöseblasen periodisch hinter dem Zylinder im Gebiet kleiner Geschwindigkeit auftreten. Dabei handelt es sich um eine primäre und eine sekundäre Ablöseblase. Im Hochgeschwindigkeitsbereich existiert nur eine Ablöseblase. Die numerischen Ergebnisse zeigten, daß die Auftriebskräfte in Richtung des Bereiches Niedergeschwindigkeit wirken, wobei deren Größe periodisch mit der Zeit schwankt. Die Größe der Auftriebskraft ist näherungsweise proportional zum ScherparameterK.
  相似文献   

6.
This paper presents results obtained from a numerical simulation of a two-dimensional (2-D) incompressible linear shear flow over a square cylinder. Numerical simulations are performed, using the lattice Boltzmann method, in the ranges of 50⩽Re⩽200 and 0⩽K⩽0.5, where Re and K are the Reynolds number and the shear rate, respectively. The effect of the shear rate on the frequency of vortex shedding from the cylinder, and the lift and drag forces exerted on the cylinder are quantified together with the flow patterns around the cylinder. The present results show that vortex structure behind the cylinder is strongly dependant on both the shear rate and Reynolds number. When Re=50, a small K can disturb the steady state and cause an alternative vortex shedding with uneven intensity. In contrast, a large value of K will suppress the vortex shedding from the cylinder. When Re>50, the differences in the strength and size of vortices shed from the upper and lower sides of the cylinder become more pronounced as K increases. Vortex shedding disappears when K is larger than a critical value, which depends on Re. The flow patterns around the cylinder for different Re tend towards self-similarity with increasing K. The lift and drag forces exerted on the cylinder, in general, decrease with increasing K. Unlike a shear flow past a circular cylinder, the vortex shedding frequency past a square cylinder decreases with increasing the shear rate. A significant reduction of the drag force occurs in the range 0.15<K<0.3.  相似文献   

7.
In this paper, a revisiting Hughes' dynamic continuum model is used to investigate and predict the essential macroscopic characteristics of pedestrian flow, such as flow, density and average speed, in a two dimensional continuous walking facility scattered with a circular obstruction. It is assumed that pedestrians prefer to walk a path with the lowest instantaneous travel cost from origin to destination, under the consideration of the current traffic conditions and the tendency to avoid a high-density region and an obstruction. An algorithm for the pedestrian flow model is based on a cellcentered finite volume method for a scalar conservation law equation, a fast sweeping method for an Eikonal-type equation and a second-order TVD Runge-Kutta method for the time integration on unstructured meshes. Numerical results demonstrate the effectiveness of the algorithm. It is verified that density distribution of pedestrian flow is influenced by the position of the obstruction and the path-choice behavior of pedestrians.  相似文献   

8.
A large-eddy simulation (LES) technique has been used for the calculation of an air flow past a heated square cylinder. The LES method is a conventional one with the Smagorinsky eddy-viscosity model, and the computational grid is small enough to be handled by workstations. The computed turbulent flow field quantities agree well with the experimental results reported by Lyn et al. (J Fluid Mech 304:285–319, 1995). Particular attention has been spent to the convective heat transfer and the prediction of the thermal fluctuations in case of a fluid with Pr = 0.71. The LES results agree well with the empirical correlations proposed by Hilpert and Sparrow et al. for the average Nusselt number.  相似文献   

9.
The two‐dimensional flows past a circular cylinder near a moving wall are simulated by lattice Boltzmann method. The wall moves at the inlet velocity and the Reynolds number ranges from 300 to 500. The influence of the moving wall on the flow patterns is demonstrated and the corresponding mechanism is illustrated by using instability theory. The correlations among flow features based on gap ratio are interpreted. Force coefficients, velocity profile and vortex structure are analyzed to determine the critical gap ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
For studying unsteady flow past a rotating circular cylinder the Navier-Stokes equations are used. The numerical algorithm is based on an artificial-compressibility method, an implicit three-layer second-order scheme with subiterations with respect to time, a third-order scheme with splitting of the flux vectors for the convective terms, and a central-difference scheme for integrating the viscous terms. The calculated velocity profiles, the vorticity fields, the Strouhal numbers, the distribution of the pressure and friction coefficients over the cylinder surface, and the coefficients of the drag and lift forces for the laminar flow regime are analyzed.  相似文献   

11.
At around the critical Reynolds number Re = (1.5–4.0)·105 there is an abrupt change in the pattern of transverse subsonic flow past a circular cylinder, and the drag coefficient Cx decreases sharply [1]. A large body of both experimental and computational investigations has now been made into subsonic flow past a cylinder [1–4]. A significant contribution to a deeper understanding of the phenomenon was made by [4], which gives a physical interpretation of a number of theoretical and experimental results obtained in a wide range of Re. Nevertheless, the complicated nonstationary nature of flow past a cylinder with separation and the occurrence of three-dimensional flows when two-dimensional flow is simulated in wind tunnels do not permit one to regard the problem as fully studied. The aim of the present work was to make additional experimental investigations into transverse subsonic flow past a cylinder and, in particular, to study the possible asymmetric stable flow regimes near the critical Reynolds number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 154–157, March–April, 1980.  相似文献   

12.
13.
A new mechanism of the formation of spatially periodic structures on the nose surfaces of cylindrically blunted bodies in a hypersonic transverse flow is investigated. According to this mechanism, a curved shock wave produces a vortex flow, while the vortex, which is conserved in the presence of weak dissipation, acts on the shock and maintains its curved shape. The realizability of this vortex formation mechanism is verified by direct numerical simulation using the FLUENT software package. It is confirmed that in the case of uniform hypersonic freestream both plane and three-dimensional modes of the steady flow past the cylinder nose can exist. The three-dimensional mode is characterized by periodic-in-span vortex structures and considerable heat flux peaks on the nose surface. The calculated results are compared with the experimental data.  相似文献   

14.
R. C. Mehta 《Shock Waves》2006,15(1):31-41
The flow fields over ARD (ESA's atmospheric reentry demonstrator), OREX (orbital reentry experiments) and spherically blunted cone-flare reentry configurations are numerically obtained by solving time-dependent, axisymmetric, compressible Navier–Stokes equations for freestream Mach numbers range of 1.2–6.0. The fluid dynamics are discretized in spatial coordinates employing a finite volume approach which reduces the governing equations to semi discretized ordinary differential equations. Temporal integration is performed using the multistage Runge–Kutta time-stepping scheme. A local time step is used to achieve steady-state solution. The numerical simulation is carried out on a structured grid. The flow-field features around the reentry capsule, such as bow shock wave, sonic line, expansion fan and recirculating flow in the base region are obtained. A good agreement is found between the calculated value of aerodynamic drag coefficient of the spherically blunted cone/fare reentry configuration with the experimental data. The effects of geometrical parameters, such as radius of the spherical cap, half cone angle, with sharp shoulder edge and with smooth shoulder edge on the flow-field have been numerically investigated for various reentry configuration which will be useful for optimization of the reentry capsule. PACS 47.11.Df, 47.40.Ki  相似文献   

15.
A finite difference study of the unsteady two-dimensional flow past a circular cylinder has been conducted using vorticity and streamfunction as the dependent variables. The two cases considered were impulsively started and decelerated flows. The impulsively started problem was considered to validate the method and has yielded results which agree quite closely with existing results from both calculations and experiments. The decelerated flow analysis produced results which can be explained in terms of induced velocity effects from existing wake vortices for both suddenly stopped and uniformly decelerated flows.  相似文献   

16.
A systematic study of laminar viscous supersonic flows past rectangular cavities in a flat plate was carried out on the basis of the numerical integration of the Navier-Stokes equations. The greater part of calculations was performed at a Mach number of the outer flow equal to 3 and at a surface temperature amounting to 20% of the stagnation temperature. The pressure, surface friction and heat flux profiles on the plate and on the cavity walls and bottom, together with the streamline pattern, were obtained for various Reynolds numbers.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 27–33, November–December, 1994.  相似文献   

17.
18.
Cavity flow past a circular cylinder is considered accounting for the surface tension on the cavity boundary. The fluid is assumed to be inviscid and incompressible, and the flow is assumed to be irrotational. The solution is based on two derived governing expressions, which are the complex velocity and the derivative of the complex potential defined in an auxiliary parameter region. An integral equation in the velocity magnitude along the free surface is derived from the dynamic boundary condition. The Brillouin–Villat criterion is employed to determine the location of the point of flow separation. The cases of zero surface tension and zero cavitation number are obtained as limiting cases of the solution. Numerical results concerning the effects of surface tension and cavitation development on the cavity detachment, the drag force and the geometry of the free boundaries are presented over a wide range of the Weber and the cavitation numbers.  相似文献   

19.
Direct numerical simulation of flow past a stationary circular cylinder at yaw angles (α) in the range of 0–60° was conducted at Reynolds number of 1000. The three-dimensional (3-D) Navier–Stokes equations were solved using the Petrov–Galerkin finite element method. The transition of the flow from 2-D to 3-D was studied. The phenomena that were observed in flow visualization, such as the streamwise vortices, the vortex dislocation and the instability of the shear layer, were reproduced numerically. The effects of the yaw angle on wake structures, vortex shedding frequency and hydrodynamic forces of the cylinder were investigated. It was found that the Strouhal number at different yaw angles (α) follows the independence principle. The mean drag coefficient agrees well with the independence principle. It slightly increases with the increase of α and reaches a maximum value at α=60°, which is about 10% larger than that when α=0°. The root-mean-square (r.m.s.) values of the lift coefficient are noticeably dependent on α.  相似文献   

20.
Results are presented for the unsteady, two-dimensional flow and heat transfer due to a square obstruction of diameter d located asymmetrically between the parallel sliding walls of a channel with length-to-height ratio W/H = 6·44. Analysis is based on the numerical solution of spatially and temporally second-order accurate finite difference approximations of the transport equations expressed in curvilinear co-ordinates. Laminar, constant property flow is assumed for obstruction configurations in which the blockage ratio is d/H = 0·192, the nearest-wall distances are g/d = 0·2, 0·5 and 1, the orientation angles are α=0°, 10° and 20° and the Reynolds numbers are Re=100, 500, and 1000. Preparatory testing of the numerical procedure was performed for a variety of documented flows to verify its physiconumerical accuracy and obtain estimates of the residual grid-dependent uncertainties in the variables calculated. Heat transfer, drag and lift coefficients and Strouhal numbers for the present flow were finally calculated to within 4%–7% of their grid-dependent values using non-uniformly spaced grids consisting of (x=99, y=55) nodes. Above a critical value of the Reynolds number, which depends on the geometrical parameters, the flow is characterized by alternate vortex shedding from the obstruction top and bottom surfaces. Streamline, vorticity and particle streakline plots provide qualitative impressions of the unsteady vortical flow. Especially noteworthy are the extremes in the lift coefficient which ranges from large positive values for an obstruction with g/d=0·2 and α=10° to negative values for one with g/d=0·5 and α=0°. Both the drag and lift coefficients as well as the Strouhal number exhibit non-monotonic variations with respect to the parameters explored. Asymmetries in the obstruction location and orientation account for relatively large vortex-induced periodic variations in heat transfer, especially along the wall nearest the obstruction. Notable differences are also predicted for the heat transfer coefficients of the individual obstruction surfaces as a function of the orientation angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号