首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Current Applied Physics》2015,15(11):1478-1481
The internal field of GaN/AlGaN/GaN heterostructure on Si-substrate was investigated by varying the thickness of an undoped-GaN capping layer using electroreflectance spectroscopy. The four samples investigated are AlGaN/GaN heterostructure without a GaN cap layer (reference sample) and three other samples with GaN/AlGaN/GaN heterostructures in which the different thickness of GaN cap layer (2.7 nm, 7.5 nm, and 12.4 nm) has been considered. The sheet carrier density (ns) of a two-dimensional electron gas has decreased significantly from 4.66 × 1012 cm−2 to 2.15 × 1012 cm−2 upon deposition of a GaN capping layer (12.4 nm) over the reference structure. Through the analysis of internal fields in each GaN capping and AlGaN barrier layers, it has been concluded that the undiminished surface donor states (ns) of a reference structure and the reduced ns caused by the Au gate metal are approximately 5.66 × 1012 cm−2 and 1.08 × 1012 cm−2, respectively.  相似文献   

2.
《Solid State Ionics》2006,177(26-32):2261-2267
Yttria-stabilized zirconia (YSZ) can be used as an oxygen-permeating membrane at elevated temperature (> 1400 °C) due to its chemical and mechanical stability. It was previously shown that the oxygen transport through YSZ membrane in reducing oxygen partial pressure (PO2) was highly influenced by the surface-exchange kinetics that can be improved by porous surface coating layers such as YSZ, GDC (Gd-doped ceria) or YSZ–GDC mixture [H.J. Park, G.M. Choi, J. Eur. Ceram. Soc. 25 (2005) 2577]. However, the increased oxygen flux was still lower than that estimated assuming bulk-diffusion limit and rapidly decreased with time due to the sintering of coating layers and the reaction between bulk YSZ and coating layers. In this study, the oxygen fluxes through YSZ with LaCrO3, GDC + LaCrO3 (bilayer), LaCrO3 + 5 wt.% GDC (mixture), or LaCr0.7Co0.3O3 coatings were measured under controlled PO2 gradient (permeate-side PO2: ∼ 3 × 10 12 atm, feed-side PO2: 2 × 10 10–2 × 10 8 atm) at 1600 °C. The oxygen flux drastically increased with these coatings. The highest increase in oxygen flux was shown with GDC + LaCrO3 (bilayer) coating and was maintained for a long time. The presence of highly catalytic Ce ions while maintaining porous structure in the coating layer may explain the observation. The prevention of formation of resistive layer due to ceria coating may also be partly responsible for the observation.  相似文献   

3.
The structure of 0.35 monolayers of platinum deposited onto Cu(110) has been investigated using medium energy ion scattering. Quantitative analysis of the data has been performed using the VEGAS routine. It was found that platinum atoms mostly occupy the second layer with a first interlayer distance of d12 = 123 ± 4 pm and a separation of first and third layers of d13= 142? 10+ 4 pm. These represent a contraction of 4% and an expansion of 11% respectively from the ideal termination of the Cu(110) surface. There is clear evidence of the presence of some platinum in the third layer.  相似文献   

4.
T. Greber  M. Corso  J. Osterwalder 《Surface science》2009,603(10-12):1373-1377
Single sheets of hexagonal boron nitride on transition metals provide a model system for single layer dielectrics. The progress in the understanding of h-BN layers on transition metals of the last 10 years is shortly reviewed. Particular emphasis lies on the boron nitride nanomesh on Rh(1 1 1), which is a corrugated single sheet of h-BN, where the corrugation imposes strong lateral electric fields. Fermi surface maps of h-BN/Rh(1 1 1) and Rh(1 1 1) are compared. A h-BN layer on Rh(1 1 1) introduces no new bands at the Fermi energy, which is expected for an insulator. The lateral electric fields of h-BN nanomesh violate the conservation law for parallel momentum in photoemission and smear out the momentum distribution curves on the Fermi surface.  相似文献   

5.
We report the use of strain-balanced quantum-well structures to generate high carrier density, high mobility layers suitable for power field effect transistor (FET) applications. Standard designs of modulation-doped heterojunctions have a sheet carrier density limited to a maximum of ∼3 ×  1012cm−2, while doped channel devices allow higher densities, but with degraded mobility. By combining the technique of delta-doping with the use of a compositionally graded InGaAs quantum well, grown strain balanced on InP, high mobilities and excellent saturation drift velocities have been obtained for sheet densities of 4–5 ×  1012cm−2. This paper describes the structure and electrical properties of the layers and assesses their potential for FETs.  相似文献   

6.
The morphological structure of clean and deuterated Er films deposited on W substrates and their removal by field evaporation have been investigated as part of a program directed toward the development of deuterium ion sources for neutron generators. Annealed Er films up to ~ 20 monolayers in thickness deposited on W < 110 > substrates appear pseudomorphic. Thicker annealed films form a hexagonal close-packed < 0001 > orientated over-layer with the Pitsch–Schrader orientation relation. The pseudomorphic and hexagonal close-packed character of the films is retained up to the last atomic layer that forms the film-substrate interface. Deuterated Er films appear polycrystalline. At 77 K in Ar, annealed Er films field evaporate at 2.5 V/Å primarily as Er2 + and deuterated Er films evaporate at ~ 2.4 V/Å primarily as ErDx2 +. Field evaporation of both clean and deuterated Er films shows signs of space charge induced field lowering when film thicknesses exceeding ~ 10 layers were field evaporated using 20 ns duration voltage pulses.  相似文献   

7.
We report device linearity improvement and current enhancement in both a heterostructure FET (HFET) and a camel-gate FET (CAMFET) using InGaAs/GaAs high-low and GaAs high-medium-low doped channels, respectively. In an HFET, a low doped GaAs layer was employed to build an excellent Schottky contact. In a GaAs CAMFET, a low doped layer together withn+andp+layers formed a high-performance majority camel-diode gate. Both exhibit high effective potential barriers of >1.0 V and gate-to-drain breakdown voltages of >20.0 V (atIg=1.0 mA mm−1). A thin, high doped channel was used to enhance current drivability and to improve the transconductance linearity. A 2×100 μm2HFET had a peak transconductance of 230 mS mm−1and a current density greater than 800 mA mm−1. The device had a transconductance of more than 80 percent of the peak value over a wide drain current range of 200 to 800 mA mm−1. A 1.5×100 μm2CAMFET had a peak transconductance of 220 mS mm−1and a current density greater than 800 mA mm−1. Similarly, the device had a transconductance of more than 80 percent of the peak value over a wide drain current range of 160 to 800 mA mm−1. The improvement of device linearity and the enhancement of current density suggest that high-to-low doped-channel devices for both an HFET and a CAMFET are suitable for high-power large signal circuit applications.  相似文献   

8.
Lanthanum-modified lead zirconate titanate (Pb0.93La0.07(Zr0.3Ti0.7)0.93O3, PLZT7/30/70) thin films with and without a seeding layer of PbTiO3 (PT) were successfully deposited on indium-doped tin oxide (ITO) coated glass substrate via spin coating in conjunction with a sol–gel process, and a top transparent conducting thin film of SnO2 was also prepared in the same way. The thicknesses of PLZT and PT layers are 0.5 μm and 24 nm, respectively. The retardance of PLZT film was measured by a new heterodyne interferometer and enhanced by application of a seeding layer of PT. The Pockels linear electro-optical coefficient of PLZT film with a PT layer was determined to be 3.17 × 10?9 m/V when the refractive index is considered as 2.505, which is one order larger than 1.4 × 10?10 m/V for PLZT12/40/60 doped with Dy reported in the literature. The root-mean-square (rms) roughness of PLZT thin film with a PT layer (Rrms = 6.867 nm) was larger than that of PLZT film (Rrms = 0.799 nm). From the comparisons, the average transmittance of PLZT film with a PT seeding layer was 77.01%, which was a little smaller than that of PLZT film (around 80.75%). Experimental results imply that the PT seeding layer plays a key role in the increase of retardance value, leading to a higher Pockels coefficient.  相似文献   

9.
An analysis of the intense blue upconversion emission at 476 and 488 nm in Tm3 +/Yb3 + codoped Y2O3 under excitation power density of 86.7 W/cm2 available from a diode laser emitting at 976 nm, has been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive blue upconversion emission at 476 and 488 nm in this material was recorded in the temperature range from 303 to 753 K. The maximum sensitivity derived from the FIR technique of the blue upconversion emission is approximately 0.0035 K? 1. The results imply that Tm3 +/Yb3 + codoped Y2O3 is a potential candidate for the optical temperature sensor.  相似文献   

10.
The cations emission from condensed matter surfaces has been investigated on the basis of localization and delocalization of valence hole(s) in the femtosecond timescale. The yield of scattered H+ (E0=100 eV), though negligibly small from the Pt(1 1 1) substrate, increases markedly when Ar is adsorbed on it, indicating the localization of a valence (H+ 1s) hole on the physisorbed Ar layer. However, the yield of H+ scattered from a thick H2O layer is considerably small relative to that from Ar and CO layers. The delocalized nature of a valence hole in water ice is caused by some covalency in hydrogen bonds. Hydrated protons, H+(H2O)n, n=1,2,…,10, are emitted efficiently in electron stimulated desorption from water molecules adsorbed on the Ar layer; the ion yields are highest at the initial adsorption stage and decay steeply with increasing coverage. Coulombic repulsion between the hydrated protons confined in physisorbed nanoclusters is responsible for the explosive ion emission.  相似文献   

11.
In this study, we proposed the Al/Al2O3/SmAlO3/SiO2/Si flash memory devices using high-k SmAlO3 film as a charge trapping layer and high-k Al2O3 film as a blocking layer. The structural and morphological features of these films were explored by X-ray diffraction, X-ray photoelectron spectroscopic and atomic force microscopy. The SmAlO3 flash memory devices annealed at 800 °C showed excellent electrical properties, such as a large memory window of ~2.61 V (measured at a sweep voltage range of ±5 V) and a small charge loss of ~7.1% (measured time up to 104 s). In addition, the charge trap centroid and charge trap density were extracted by constant current stress method.  相似文献   

12.
The effect of Yb3 + concentration on the fluorescence of 12 CaO·7 Al2O3:Tm3 +/Yb3 + polycrystals is investigated. Under the excitation of 980 nm laser, the strong blue (477 nm) emission band is observed and attributed to 1G4  3H6 of Tm3 +. The ratio of blue to red emission increases with the increasing of Yb3 + and remains constant at 10 mol% Yb3 +. The pump dependence and upconversion mechanisms show that the two-photon cooperative upconversion process is responsible for the enhancement of the blue upconversion emission. The Commission Internationale de l'eclairage chromaticity coordinates (x, y) illustrate that the 12 CaO·7 Al2O3:1 mol% Tm3 +/10 mol% Yb3 + can emit high-purity blue light.  相似文献   

13.
Thin films of tungsten phosphate glasses were deposited on a Pd substrate by a pulsed laser deposition method and the flux of hydrogen passed thorough the glass film was measured with a conventional gas permeation technique in the temperature range 300–500 °C. The glass film deposited at low oxygen pressure was inappropriate for hydrogen permeation because of reduction of W ions due to oxygen deficiency. The membrane used in the hydrogen permeation experiment was a 3-layered membrane and consisted of Pd film (~ 20 nm), the glass film (≤ 300 nm) and the Pd substrate (250 µm). When the pressure difference of hydrogen and thickness of the glass layer were respectively 0.2 MPa and ~ 100 nm, the permeation rate through the membrane was 2.0 × 10? 6 mol cm? 2 s? 1 at 500 °C. It was confirmed that the protonic and electronic mixed conducting glass thin film show high hydrogen permeation rate.  相似文献   

14.
Dye sensitized solar cells (DSSCs) were fabricated based on coumarin NKX-2700 dye sensitized bi-layer photoanode and quasi-solid state electrolyte sandwiched together with cobalt sulfide coated counter electrode. A novel bi-layer photoanode has been prepared using composite mixtures of 90 wt.% TiO2 nanoparticles + 10 wt.% TiO2 nanowires (TNPWs) as active layer and Nb2O5 is coated on the active layer, which acts as scattering layer. Hafnium oxide (HfO2) was applied over the TNPWs/Nb2O5 photoanode film, as a blocking layer. TiO2 nanoparticles (TNPs), TiO2 nanowires (TNWs) and TNPWs/Nb2O5 were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The sensitizing organic dye coumarin NKX-2700 displayed maximum absorption wavelength (λmax) at 525 nm, which could be observed from the UV–vis spectrum. DSSC-1 fabricated with composite bi-layer photoanode revealed enhanced photo-current efficiency (PCE) as compared to other DSSCs and illustrated photovoltaic parameters; short-circuit current JSC = 18 mA/cm2, open circuit voltage (VOC) = 700 mV, fill factor (FF) = 64% and PCE (η) = 8.06%. The electron transport and charge recombination behaviors of DSSCs were investigated by electrochemical impedance spectra (EIS) and the results illustrated that the DSSC-1 showed the lowest charge transport resistance (Rtr) and the longest electron lifetime (τeff). Therefore, in the present investigation, it could be concluded that the novel bi-layer photoanode with blocking layer increased the short circuit current, electron transport and suppressed the recombination of charge carriers at the photoanode/dye/electrolyte interface in DSSC-1.  相似文献   

15.
Nitric oxide chemistry and photochemistry on the Cr-terminated surface of α-Cr2O3(0001) were examined using temperature programmed desorption (TPD), sticking coefficient measurements and photodesorption. NO exposed to α-Cr2O3(0001) at 100 K binds at surface Cr cation sites forming a strongly bound surface species that thermally desorbs at 320–340 K, depending on coverage. No thermal decomposition was detected in TPD in agreement with previous results in the literature. Sticking probability measurements at 100 K indicated near unity sticking for NO up to coverages of ~ 1.3 ML, with additional adsorption with higher exposures at decreased sticking probability. These results suggest that some Cr cation sites on the α-Cr2O3(0001) surface were capable of binding more than one NO molecule, although it is unclear whether this was as separate NO molecules or as dimers. Photodesorption of adsorbed NO was examined for surface coverages below the 1 ML point. Both visible and UV light were shown to photodesorb NO without detectable NO photodecomposition. Visible light photodesorption of NO occurred with a greater cross section than estimated using UV light. The visible light photodesorption event was not associated with bandgap excitation in α-Cr2O3(0001), but instead was linked to excitation of a surface Cr3 +–NO? charge transfer complex. These results illustrate that localized photoabsorption events at surface sites with unique optical properties (relative to the bulk) can result in unexpected surface photochemistry.  相似文献   

16.
Colloidal suspensions of hematite in contact with aqueous solutions of 50 mM alkali metal chloride electrolytes (NaCl, KCl, RbCl, CsCl) were investigated by cryogenic X-ray photoelectron spectroscopy (XPS) and electrophoretic mobility. Suspension pH values were varied from 2 to 11 in order to evaluate effects of positively- and negatively-charged hematite surfaces. XPS revealed coexisting cations and chloride ions both below and above the point of zero charge. Concentration profiles of adsorbed cations point to a Hofmeister series in the order of Na+ > K+ > Rb+  Cs+. Binding energies of photoelectrons emitted from electrolyte ions increased with pH at roughly 0.04 eV per pH unit. This shift was attributed to variations in the surface electric potential of hematite. This effect, compounded by rises in aliphatic carbon signals with pH, called for referencing of all spectra to the 530.0 eV oxide component of the hematite O1s spectrum. This departure from the traditional use of the external C 1s 285.0 eV peak is hereby proposed for cryogenic XPS studies of interfacial reactions involving hematite.  相似文献   

17.
We have studied the formation of a Bi-induced (2 × 2) reconstruction on the InAs(111)B surface. In connection to the development of the (2 × 2) reconstruction, a two dimensional charge accumulation layer located at the bottom of the InAs conduction band appears as seen through a photoemission structure at the Fermi level. Not well ordered Bi layers do not induce a charge accumulation. The Bi-induced reconstruction reduces the polarization of the pristine surface and changes the initial charge distribution. InAsBi alloying occurs below the surface where Bi acts as charge donor leading to the charge accumulation layer.  相似文献   

18.
We prepared highly flexible, transparent, conductive and antibacterial film by spin coating a silver nanowire suspension on a poly (ethylene terephthalate) (PET) substrate. The ZnO layer covered the conductive silver nanowire (AgNW) network to protect the metal nanowires from oxidization and enhance both wire-to-wire adhesion and wire-to-substrate adhesion. It is found that the number of AgNW coatings correlates with both the sheet resistance (Rs) and the transmittance of the AgNW/ZnO composite films. An excellent 92% optical transmittance in the visible range and a surface sheet resistance of only 9 Ω sq−1 has been achieved, respectively. Even after bending 1000 times (5 mm bending radius), we found no significant change in the sheet resistance or optical transmittance. The real-time sheet resistance measured as a function of bending radius also remains stable even at the smallest measured bending radius (1 mm). The AgNW/ZnO composite films also show antibacterial effects which could be useful for the fabrication of wearable electronic devices.  相似文献   

19.
A concept for a picosecond molecular switch is demonstrated using a photoinduced electron transfer reaction in a covalently linked, fixed distance donor–acceptor molecule D–A linked to a perylene-3,4-dicarboximide chromophore, C. The chromophore C possesses a strong charge transfer transition in its optical spectrum. Selective excitation of C within D–A–C using 530 nm, 130 fs laser pulses produces1 * C, which undergoes singlet–singlet energy transfer to produce1 * D, which in turn transfers an electron to A. If the D–A–C system is selectively excited with 416 nm, 130 fs laser pulses to produce D + – A  –C prior to excitation of C with 530 nm, 130 fs laser pulses, a 25% lower yield of1 * C is generated. The intense local electric field produced by D + – A  causes a 15 nm electrochromic red shift of the charge transfer absorption of C. Thus, the absorption of C at 530 nm is significantly diminished by the presence of D + – A  . The need to use two laser pulses with different wavelengths to observe these effects, and the resulting picosecond time response makes it possible to consider applications of this concept in the design of molecular switches.  相似文献   

20.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号