首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the relationship between finite volume and finite element approximations for the lower‐order elements, both conforming and nonconforming for the Stokes equations. These elements include conforming, linear velocity‐constant pressure on triangles, conforming bilinear velocity‐constant pressure on rectangles and their macro‐element versions, and nonconforming linear velocity‐constant pressure on triangles and nonconforming rotated bilinear velocity‐constant pressure on rectangles. By applying the relationship between the two methods, we obtain the convergence finite volume solutions for the Stokes equations. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 440–453, 2001.  相似文献   

2.
Bastian Helldörfer  Günther Kuhn 《PAMM》2007,7(1):4030021-4030022
A boundary element based finite macro element for the simulation of 3D crack propagation in the framework of linear elastic fracture mechanics is presented. While the major part of the numerical model is discretized with finite elements, a small domain containing the crack is meshed with boundary elements. By means of the Symmetric Galerkin BEM a stiffness formulation for the cracked BE domain is obtained which enables a direct FEM/BEM coupling. All necessary operations for the crack propagation are carried out within this boundary element based finite macro element and exploit the potential of the boundary integral formulation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
This paper presents an alternative alpha finite element method using triangular meshes (AαFEM) for static, free vibration and buckling analyses of laminated composite plates. In the AαFEM, an assumed strain field is carefully constructed by combining compatible strains and additional strains with an adjustable parameter α which can produce an effectively softer stiffness formulation compared to the linear triangular element. The stiffness matrices are obtained based on the strain smoothing technique over the smoothing domains and the constant strains on triangular sub-domains associated with the nodes of the elements. The discrete shear gap (DSG) method is incorporated into the AαFEM to eliminate transverse shear locking and an improved triangular element termed as AαDSG3 is proposed. Several numerical examples are then given to demonstrate the effectiveness of the AαDSG3.  相似文献   

5.
This paper is the first of a three-part series that studies the formulation of 3-node, 9-dof membrane elements with normal-to-element-plane rotations (the so-called drilling freedoms) within the context of parametrized variational principles. These principles supply a unified basis for several advanced element-construction techniques; in particular: the free formulation (FF), the extended free formulation (EFF) and the assumed natural deviatoric strain (ANDES) formulation. In Part I we construct an element of this type using the EFF. This derivation illustrates the basic steps in the application of that formulation to the construction of high-performance, rank-sufficient, nonconforming elements with corner rotations. The element is initially given the twelve degress of freedom of the linear strain triangle (LST), which allows the displacement expansion to be a complete quadratic in each component. The expansion basis contains the six linear basic functions and six energy-orthogonal quadratic higher-order functions. Three degrees of freedom, defined as the midpoint deviations from linearity along the triangle-median directions, are eliminated by kinematic constraints. The remaining hierarchical midpoint freedoms are transformed to corner rotations. The performance of the resulting element is evaluated in Part III.  相似文献   

6.
This is the second article in a three-part series on the construction of 3-node, 9-dof membrane elements with normal-to-its-plane rotational freedoms (the so-called drilling freedoms) using parametrized variational principles. In this part, one such element is derived within the context of the assumed natural deviatoric strain (ANDES) formulation. The higher-order strains are obtained by constructing three parallel-to-sides pure-bending modes from which natural strains are obtained at the corner points and interpolated over the element. To attain rank sufficiency, an additional higher-order “torsional” mode, corresponding to equal hierarchical rotations at each corner with all other motions precluded, is incorporated. The resulting formulation has five free parameters. When these parameters are optimized against pure bending by energy balance methods, the resulting element is found to coalesce with the optimal EFF element derived in Part I. Numerical integration as a strain filtering device is found to play a key role in this achievement.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(11-12):2867-2883
The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of nonlinearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity.  相似文献   

8.
We present theoretical analyses of and detailed timings for two programs which use high-order finite element methods to solve the Navier- Strokes equations in two and three dimensions. The analyses show that algorithms popular in low-order finite element implementations are not always appropriate for high-order methods. The timings show that with the proper algorithms high-order finite element methods are viable for solving the Navier-Stokes equations. We show that it is more efficient, both in time and storage, not to precompute element matrices as the degree of approximating functions increases. We also study the cost of assembling the stiffness matrix versus directly evaluating bilinear forms in two and three dimensions. We show that it is more efficient not to assemble the full stiffness matrix for high-order methods in some cases. We consider the computational issues with regard to both Euclidean and isoparametric elements. We show that isoparametric elements may be used with higher-order elements without increasing the order of computational complexity.  相似文献   

9.
In this article, we review results on primitive elements of free algebras of main types of Schreier varieties of algebras. A variety of linear algebras over a field is Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras. A system of elements of a free algebra is primitive if it is a subset of some set of free generators of this algebra. We consider free nonassociative algebras, free commutative and anti-commutative nonassociative algebras, free Lie algebras and superalgebras, and free Lie p-algebras and p-superalgebras. We present matrix criteria for systems of elements of elements. Primitive elements distinguish automorphisms: endomorphisms sending primitive elements to primitive elements are automorphisms. We give a series of examples of almost primitive elements (an element of a free algebra is almost primitive if it is not a primitive element of the whole algebra, but it is a primitive element of any proper subalgebra which contains it). We also consider generic elements and Δ-primitive elements. Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 74, Algebra-15, 2000.  相似文献   

10.
For a class of two‐dimensional boundary value problems including diffusion and elasticity problems, it is proved that the constants in the corresponding strengthened Cauchy‐Buniakowski‐Schwarz (CBS) inequality in the cases of two‐level hierarchical piecewise‐linear/piecewise‐linear and piecewise‐linear/piecewise‐quadratic finite element discretizations with triangular meshes differ by the factor 0.75. For plane linear elasticity problems and triangulations with right isosceles triangles, formulas are presented that show the dependence of the constant in the CBS inequality on the Poisson's ratio. Furthermore, numerically determined bounds of the constant in the CBS inequality are given for plane linear elasticity problems discretized by means of arbitrary triangles and for three‐dimensional elasticity problems discretized by means of tetrahedral elements. Finally, the robustness of iterative solvers for elasticity problems is discussed briefly. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 469–487, 1999  相似文献   

11.
This paper discusses the analytical elastostatic stiffness modeling of parallel manipulators (PMs) considering the compliance of the link and joint. The proposed modeling is implemented in three steps: (1) the limb constraint wrenches are formulated based on screw theory; (2) the strain energy of the link and the joint is formulated using material mechanics and a mapping matrix, respectively, and the concentrated limb stiffness matrix corresponding to the constraint wrenches is obtained by summing the strain energy of the links and joints in the limb; and (3) the overall stiffness matrix is assembled based on the deformation compatibility equations. The strain energy factor index (SEFI) is adopted to describe the influence of the elastic components on the stiffness performance of the mechanism. Matrix structural analysis (MSA) using Timoshenko beam elements is applied to obtain analytical expressions for the compliance matrices of different joints through a three-step process: (1) formulate the element stiffness equation for each element; (2) extend the element stiffness equation to obtain the element contribution matrix, allowing the extended overall stiffness matrix to be obtained by summing the element contribution matrices; and (3) determine the stiffness matrices of joints by extracting the node stiffness matrix from the extended overall stiffness matrix and then releasing the degrees of freedom of twist. A comparison with MSA using Euler–Bernoulli beam elements demonstrates the superiority of using Timoshenko beam elements. The 2PRU-UPR PM is presented to illustrate the effectiveness of the proposed approach. Finally, the global SEFI and scatter matrix are used to identify the elastic component with the weakest stiffness performance, providing a new approach for effectively improving the stiffness performance of the mechanism.  相似文献   

12.
In this paper, a quadrilateral element is proposed for the analysis of thin plate bending. This element is non-conforming and consists of four-nodes and twelve degrees of freedom. A third-order field for the element displacement is written in terms of the deformation modes. Moreover, the rotational fields are obtained by utilizing the first-order Jacobean matrix. All interpolation functions are explicitly found by the presented formulation. The stiffness matrix of the element is then computed by using these functions. Finally, the accuracy of the suggested element is evaluated by solving some thin plate bending structures. Numerical findings reveal the new quadrilateral element MKQ12 is robust and accurate for analysis of thin plates.  相似文献   

13.
This paper deals with a finite element method to solve interior fluid-structure vibration problems valid for compressible and incompressible fluids. It is based on a displacement formulation for both the fluid and the solid. The pressure of the fluid is also used as a variable for the theoretical analysis yielding a well posed mixed linear eigenvalue problem. Lowest order triangular Raviart-Thomas elements are used for the fluid and classical piecewise linear elements for the solid. Transmission conditions at the fluid-solid interface are taken into account in a weak sense yielding a nonconforming discretization. The method does not present spurious or circulation modes for nonzero frequencies. Convergence is proved and error estimates independent of the acoustic speed are given. For incompressible fluids, a convenient equivalent stream function formulation and a post-process to compute the pressure are introduced.

  相似文献   


14.
A method of creating the stiffness matrix of a hexahedral eight-node finite element with a single, nonpropagating, transverse, one-edge crack at half of its length is presented in this paper. The crack was modelled by adding an additional flexibility matrix to that of the noncracked element. The terms of the additional matrix have been calculated by use of the laws of fracture mechanics. Employing the elaborated element a numerical test has been worked out, the results of which are compared with the data of analytical solutions accessible in the literature, and a high conformity with them has been obtained. The element presented in the paper may be applied to the static and dynamic analysis of different types of structural elements with material defects in the form of cracks. The described method of creating the stiffness matrix of the element allows to create different kinds of finite elements with cracks provided that the stress intensity factors for a given type of crack are known.  相似文献   

15.
This contribution is concerned with mixed finite element formulations for modeling piezoelectric beam and shell structures. Due to the electromechanical coupling, specific deformation modes are joined with electric field components. In bending dominated problems incompatible approximation functions of these fields cause incorrect results. These effects occur in standard finite element formulations, where interpolation functions of lowest order are used. A mixed variational approach is introduced to overcome these problems. The mixed formulation allows for a consistent approximation of the electromechanical coupled problem. It utilizes six independent fields and could be derived from a Hu-Washizu variational principle. Displacements, rotations and the electric potential are employed as nodal degrees of freedom. According to the Timoshenko theory (beam) and the Reissner-Mindlin theory (shell), the formulations account for constant transversal shear strains. To incorporate three dimensional constitutive relations all transversal components of the electric field and the strain field are enriched by mixed finite element interpolations. Thus the complete piezoelectric coupling is appropriately captured. The common assumption of vanishing transversal stress and dielectric displacement components is enforced in an integral sense. Some numerical examples will demonstrate the capability of the presented finite element formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Summary. A finite element method to approximate the vibration modes of a structure in contact with an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of an added mass formulation, which is one of the most usual procedures in engineering practice. Gravity waves on the free surface of the liquid are also considered in the model. Piecewise linear continuous elements are used to discretize the solid displacements, the variables to compute the added mass terms and the vertical displacement of the free surface, yielding a non conforming method for the spectral coupled problem. Error estimates are settled for approximate eigenfunctions and eigenfrequencies. Implementation issues are discussed and numerical experiments are reported. In particular the method is compared with other numerical scheme, based on a pure displacement formulation, which has been recently analyzed. Received August 31, 1998 / Published online July 12, 2000  相似文献   

17.
Summary We study a superconvergence phenomenon which can be obtained when solving a 2nd order elliptic problem by the usual linear elements. The averaged gradient is a piecewise linear continuous vector field, the value of which at any nodal point is an average of gradients of linear elements on triangles incident with this nodal point. The convergence rate of the averaged gradient to an exact gradient in theL 2-norm can locally be higher even by one than that of the original piecewise constant discrete gradient.  相似文献   

18.
This research describes spectral finite element formulation for vibration analysis of rectangular symmetric cross-ply laminated composite plates of Levy-type based on classical lamination plate theory (CLPT). Formulation based on SFEM includes partial differential equations of motion, spectral displacement field, dynamic shape functions, and spectral element stiffness matrix (SESM). In this paper, vibration analysis of composite plate is investigated in two sections: free vibrations and forced vibrations. In free vibrations, natural frequencies are calculated for different Young’s moduli ratios and boundary conditions. In forced vibrations, plate vibrations are investigated under high-frequency concentrated impulsive loads. The resulting responses due to spectral element formulation are compared with those of (time-domain) finite element and analytical formulations, whenever available. The results demonstrate the superiority of SFEM with respect to FEM, in reducing computational burden, simultaneously increasing numerical accuracy, specifically for excitations of high-frequency content. By reducing the time duration of impulsive loads, and consequently increasing the modal contribution of higher modes in the transient response of plate, the accuracy of FEM responses decreases substantially accompanied with a high volume of computations, while the accuracy of the SFEM response results is very high and simultaneously, with a low computational burden. Practically, SFEM follows very closely exact analytical solutions.  相似文献   

19.
In this work, students’ thinking modes and representation types in linear algebra are investigated through statistical implicative analysis techniques. Specifically, our research question considers the implicative relationships between students’ thinking modes and representation types of linear algebra. The participants were 74 undergraduate linear algebra students enrolled in the department of mathematics education of a government university located in western Turkey. The data was collected using six paper-and-pencil tasks, relating to a context of linear equations, matrix algebra, linear combination, span, linear independency–dependency and basis. A document analysis technique was used to analyze the data within a theoretical lens of thinking modes and representation types. To delineate similarity diagrams, hierarchical trees, and implicative models (which will be detailed in the paper), an R version of Cohesion Hierarchical Implicative Classification software was used. According to the results, students’ analytic structural thinking modes on linear combination and span and linear independency significantly imply the use of algebraic and abstract representations. The results also confirm that the notions of linear combination and span and linear dependency/independency are core elements for theoretical thinking and are needed for learning linear algebra.  相似文献   

20.
M. Wagner  L. Gaul 《PAMM》2002,1(1):12-13a
The so‐called hybrid stress boundary element method (HSBEM) is introduced in a frequency domain formulation for the computation of acoustic radiation and scattering in closed and in finite domains. Different from other boundary element formulations, the HSBEM is based on an extended Hellinger‐Reissner variational principle and leads to a Hermitian, frequency‐dependent stiffness equation. Due to this, the method is very well suited for treating fluid structure interaction problems since the effort for the coupling the structure, discretized by a finite elements, and the fluid, discretized by the HSBEM is strongly reduced. To arrive at a boundary integral formulation, the field variables are separated into boundary variables, which are approximated by piecewise polynomial functions, and domain variables, which are approximated by a superposition of singular fundamental solutions weighed by source strength. This approximation cancels the domain integral over the equation of motion in the hybrid principle and leads to a boundary integral formulation, incorporating singular integrals. Comparing to previous results published by the authors, new considerations concerning the interpretation of singular contributions in the stiffness matrix for exterior domain problems are communicated here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号