首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chemical physics》2005,308(3):217-224
A quantum model based on the time-dependent initial state selected wave packet approach was developed to study the four-center (4C) reaction, A2 + B2  2AB, and the competing collision induced dissociation (CID), A2 + B2  A + B2 + A, as applied to the H2(v1) + H2(v2) system important in combustion. A reduced three-dimensional model of the reaction with the atoms constrained to an isosceles trapezium and a realistic global potential energy surface of Aguado et al. [J. Chem. Phys. 101 (1994) 2742], following Hernández and Clary [J. Chem. Phys. 104 (1996) 8413], was used. A method to analyse the reaction flux for 4C and CID reaction probabilities is presented. The initial A2 vibrational excitation is not only more efficient than translational energy in facilitating the 4C and CID processes, it also reduces the threshold energy. Both the 4C and CID processes exhibit similar threshold energy behavior. For low vibrational excitation in the A2 diatom, the 4C process is dominant; as the A2 diatom becomes highly excited the CID process becomes more important at low collision energies with B2, but as the collision energy increases the 4C process is favored again.  相似文献   

2.
To investigate the role of the excited triplet state in the deactivation process of 5-hydroxyflavone (5HF), the photophysical process of 5HF was studied by transient absorption, phosphorescence spectroscopies, and semiempirical calculations. The triplet–triplet absorption (T–T) spectra of 5HF and 5-methoxyflavone (5MF) were observed upon direct and triplet-sensitized excitation. The T–T spectrum of 5HF (λmax=350 nm, τT=2.8 μs) was different from that of 5MF (λmax=360 nm, τT=6.8 μs). Estimations of the triplet energies of 5HF and 5MF by quenching experiments, phosphorescence, and semiempirical (PM3/CI4) calculation revealed that 5HF underwent an intramolecular hydrogen atom transfer and formed the tautomer in the excited triplet state. The triplet energy of the normal form of 5HF was 260 kJ mol−1, while that of the tautomer form (5HF′) was 197 kJ mol−1. The triplet energy of 5MF, the model compound of the normal form of 5HF, was 261 kJ mol−1. The PM3/CI4 calculation supported the experimental observations and suggested that the most stable conformer in the triplet state of 5HF is the tautomer form.  相似文献   

3.
The molar heat capacities of GeCo2O4 and GeNi2O4, two geometrically frustrated spinels, have been measured in the temperature range from T=(0.5 to 400) K. Anomalies associated with magnetic ordering occur in the heat capacities of both compounds. The transition in GeCo2O4 occurs at T=20.6 K while two peaks are found in the heat capacity of GeNi2O4, both within the narrow temperature range between 11.4<(T/K)<12.2. Thermodynamic functions have been generated from smoothed fits of the experimental results. At T=298.15 K the standard molar heat capacities are (143.44 ± 0.14) J · K−1 · mol−1 for GeCo2O4 and (130.76 ± 0.13) J · K−1 · mol−1 for GeNi2O4. The standard molar entropies at T=298.15 K for GeCo2O4 and GeNi2O4 are (149.20 ± 0.60) J · K−1 · mol−1 and (131.80 ± 0.53) J · K−1 · mol−1 respectively. Above 100 K, the heat capacity of the cobalt compound is significantly higher than that of the nickel compound. The excess heat capacity can be reasonably modeled by the assumption of a Schottky contribution arising from the thermal excitation of electronic states associated with the CO2+ ion in a cubic crystal field. The splittings obtained, 230 cm−1 for the four-fold-degenerate first excited state and 610 cm−1 for the six-fold degenerate second excited state, are significantly lower than those observed in pure CoO.  相似文献   

4.
A 0D numerical approach including a Collisional-Radiative model is elaborated in the purpose of describing the behavior of the nascent plasma resulting from the interaction between a 4 ns/65 mJ/532 nm Q-switched Nd:YAG laser pulse and an aluminum sample in vacuum. The heavy species considered are Al, Al+, Al2+ and Al3+ on their different excited states and free electrons. The translation temperatures of free electrons and heavy species are assumed different (Te and TA respectively). Numerous elementary processes are accounted for as electron impact induced excitation and ionization, elastic collisions, multiphoton ionization and inverse Bremsstrahlung. Atoms passing from the sample to gas phase are described by using classical vaporization theory so that the surface temperature is arbitrarily limited to values less than the critical point one at 6700 K. The laser flux density considered in the study is therefore moderate with a fluence lower than 7 J cm? 2.This model puts forward the major influence of multiphoton ionization in the plasma formation, whereas inverse Bremsstrahlung turns out to be quasi negligible. The increase of electron temperature is mainly due to multiphoton ionization and Te does not exceed 10,000 K. The electron induced collisions play an important role during the subsequent phase which corresponds to the relaxation of the excited states toward Boltzmann equilibrium. The electron density reaches its maximum during the laser pulse with a value  1022, 1023 m? 3 depending highly on the sample temperature. The ionization degree is of some percents in our conditions.  相似文献   

5.
《Polyhedron》2005,24(16-17):2562-2567
Molecular magnets have been recently proposed as possible building blocks for a solid-state quantum computer. In order to substantiate and develop such a proposal, one needs to identify those molecules that are best suited for the qubit encoding and manipulation. Here, we focus on a heterometallic molecular ring, namely Cr7Ni, where the substitution of one Cr3+(S = 3/2) with Ni2+(S = 1) provides an extra spin to the otherwise compensated molecule. We show that its ground state consists in an S = 1/2 doublet, energetically well separated (Δ0/kB  13 K at zero magnetic field) from the first excited multiplet. This relatively large value of Δ0, together with the reduced mixing of the subspaces corresponding to different values of the total spin S, enables a safe encoding of the |0〉 and |1〉 states with the ground-state doublet, and allows to coherently rotate the effective S = 1/2 spin, while keeping the population loss to the excited states negligible. A further, intriguing challenge is represented by the implementation of the conditional dynamics (two-qubit gates). We present here preliminary characterization of molecular “Cr7Ni-dimers”, i.e., derivatives in which two Cr7Ni rings are linked with each other by means of delocalized aromatic amines. The resulting intercluster couplings are estimated to be ⩽1 K and are expected to be permanent, i.e., not tuneable during gating, as required by the standard approach to quantum computation. We discuss a computational scheme that allows in principle to overcome this limitation. The most relevant decoherence mechanisms for Cr7Ni and possible ways to reduce their effects are discussed as well.  相似文献   

6.
The phonon dispersions of SrMoO4 crystal are calculated using the lattice dynamical calculations approach. Spontaneous Raman spectra in the SrMoO4 were measured in the temperature range from 10 K to 295 K, and the temperature dependence of the linewidth of the Bg (95 cm−1) and Ag (888 cm−1) Raman modes was analyzed using the lattice dynamical perturbative approach. We found that different behaviors of these two modes in the case of temperature broadening could be attributed to the large energy band gap in the phonon spectrum resulting in different anharmonic interactions. The calculated temperature dependence of the linewidth of Ag (888 cm−1) mode was well accounted for the experimental one by including both down-conversion by the cubic term and the dephasing by quartic term. The dephasing processes are increased only at high temperatures and the effect of dephasing is related to the size of a large phonon band gap.  相似文献   

7.
4-Amino-3-furazanecarboxamidoxime (AAOF) is an important precursor for synthesizing new furazano (furoxano) energetic compounds. Its thermal behaviour was studied under a non-isothermal condition by DSC methods. The results of this study show that there are one melting process and two exothermic decomposition processes. Its kinetic parameters of the intense exothermic decomposition process are obtained from analysis of the DSC curves. The apparent activation energy (Ea), pre-exponential factor (A) and the mechanism function (f(α)) were (146 ± 18) kJ · mol−1, (1010.9±1.8) s−1 and (1  α)2, respectively. The specific molar heat capacity (Cp,m) of AAOF was determined by a continuous Cp mode of micro-calorimeter. The self-accelerating decomposition temperature (TSADT), thermal ignition temperature (TTIT) and critical temperatures of thermal explosion (Tb) were obtained to evaluate its thermal safety.  相似文献   

8.
The release of uranium from geologic nuclear waste repositories under oxidizing conditions can only be modeled if the thermodynamic properties of the secondary uranyl minerals that form in the repository setting are known. Toward this end, we synthesized soddyite ((UO2)2(SiO4)(H2O)2), and performed solubility measurements from both undersaturation and supersaturation. The solubility measurements rigorously constrain the value of the solubility product of synthetic soddyite, and consequently its standard-state Gibbs free energy of formation. The log solubility product (lg Ksp) with its error (1σ) is (6.43 + 0.20/−0.37), and the standard-state Gibbs free energy of formation is (−3652.2 ± 4.2 (2σ)) kJ mol−1. High-temperature drop solution calorimetry was conducted, yielding a calculated standard-state enthalpy of formation of soddyite of (−4045.4 ± 4.9 (2σ)) kJ · mol−1. The standard-state Gibbs free energy and enthalpy of formation yield a calculated standard-state entropy of formation of soddyite of (−1318.7 ± 21.7 (2σ)) J · mol−1 · K−1. The measurements and associated thermodynamic calculations not only describe the T = 298 K stability and solubility of soddyite, but they also can be used in predictions of repository performance through extrapolation of these properties to repository temperatures.  相似文献   

9.
The photophysical and photochemical studies of a sulfonylurea herbicide, thifensulfuron-methyl (THM), have been investigated in a buffered aqueous solution. In the first part, the influence of pH on the spectroscopic properties was studied. This allowed the determination of the ground and excited state acidity constants, pKa = 4 and 4.4, respectively, thus exhibiting the potential existence of a photoinduced protonation in the singlet state. In the second part, the photolysis kinetics was studied at different pH and varying oxygen concentrations, using an HPK 125 W lamp and followed up by the identification of photoproducts formed under continuous photo-irradiation. The kinetics results suggest that the photolysis process is faster in acidic (k = 3 × 10?4 s?1) than in basic medium (k = 9.8 × 10?5 s?1). The photolysis products were identified by high performance liquid chromatography HPLC-DAD, HPLC–MS and HPLC–MS–MS. In order to obtain a better understanding of the photodegradation mechanism, a laser flash photolysis study was performed. By comparing the quenching rate constant (kq = 9.64 × 108 mol?1 l s?1) obtained from triplet state quenching by molecular oxygen and from the Stern–Volmer relation (kq = 0.41 × 108 mol?1 l s?1), the role of the singlet state in the photodegradation process was demonstrated. The photoproducts originating from both singlet and triplet excited states have been identified and hypothetical photodegradation pathways of the thifensulfuron-methyl in aqueous solution are proposed.  相似文献   

10.
《Chemical physics》2005,308(3):325-334
A total of ∼1200 trajectories have been integrated for the two photodissociation channels of formic acid, HCOOH  H2O + CO (1) and HCOOH  CO2 + H2 (2), which occur with 248 and 193 nm photons, using the direct ab initio molecular dynamics method at the RMP2(full)/cc-pVDZ level of theory. It was found that the percentage of the energy distributed to a relative translational mode in reaction (2) is much larger than that in reaction (1). This is mainly due to the difference in the geometry of transition state (TS); the H2O geometry in the TS of reaction (1) was predicted to significantly deviate from the equilibrium one, whereas the CO2 and H2 geometries in the TS of reaction (2) were found to be more similar to their equilibrium ones. It was also found that the product diatomic molecules, CO and H2, are both vibrationally and rotationally excited. The calculated relative population of the vibrationally excited CO for the 248 nm photodissociation was consistent with experiment.  相似文献   

11.
Activity coefficients for the (CaCl2 + amino acid + water) system were determined at a temperature of 298.15 K using ion-selective electrodes. The range of molalities of CaCl2 is (0.01 to 0.20) mol · kg?1, and that of amino acids is (0.10 to 0.40) mol · kg?1. The activity coefficients obtained from the Debye–Hückel extended equation and the Pitzer equation are in good agreement with each other. Results show that the interactions between CaCl2 and amino acid are controlled mainly by the electrostatic interactions (attraction). Gibbs free energy interaction parameters (gEA) and salting constants (kS) are positive, indicating that these amino acids are salted out by CaCl2. These results are discussed based on group additivity model.  相似文献   

12.
《Solid State Sciences》2007,9(3-4):322-328
Electrochemical measurements demonstrate that magnesium surfaces can be protected by alkyl carboxylate. In a nearly neutral pH solution of sodium decanoate, the reduced corrosion rate and a passivation behaviour are attributed to the formation of Mg(C10H19O2)2(H2O)3 (Mg(C10)2) at the magnesium surface whereas heptanoate Mg(C7H13O2)2(H2O)3 (Mg(C7)2) is not efficient in such media. The crystal structures of the two metal carboxylates Mg(C7)2 and Mg(C10)2 are determined by X-ray diffraction. Single crystal data: Mg(C7)2, P21/a, a = 9.130(5) Å, b = 8.152(5) Å, c = 24.195(5) Å, β = 91.476(5)°, V = 1800.3(15) Å3, Dx = 1.242 g cm−3, Z = 4. Synchrotron powder data: Mg(C10)2, P21/a, a = 9.070(3) Å, b = 8.165(1) Å, c = 32.124(1) Å, β = 98.39(1)°, V = 2353.85(8) Å3, Dx = 1.188 g cm−3, Z = 4. Their layered structures are quite similar and differ mainly by the length of the hydrophobic chains. They consist of two planes of O-octahedra centred by Mg atoms, parallel to (001). The distorted octahedra are constituted by three oxygen atoms from carboxylate groups and by three oxygen atoms coming from water molecules. The layers are connected by hydrogen bonds. The carboxylate chains are located perpendicularly and on both sides of these planes. One carboxylate chain is bridging the Mg atom along [010] while the other is monodendate. The presence of structural water is confirmed by thermal analyses.  相似文献   

13.
《Polyhedron》2007,26(9-11):2161-2164
Theoretical methods based on density functional theory have been employed to analyze the exchange interactions in a Fe9W12 polyoxometalate complex. The calculated values of the seven exchange coupling constants required by the molecular structure agree well with those reported previously for other FeIII polynuclear complexes and give an S = 15/2 single determinant ground state, with a first excited state that has S = 5/2.  相似文献   

14.
Superhalogens are species whose electron affinity (EA) or vertical detachment energy (VDE) exceeds those of halogens. These species typically consist of a central electropositive atom with electronegative ligands. The EA or VDE of species can be further increased by using superhalogens as ligands, which are termed as hyperhalogens. Having established BH4 as a superhalogen, we have studied BH4  x(BH4)x (x = 1–4) hyperhalogen anions and their Li-complexes LiBH4  x(BH4)x using density functional theory. The VDE of these anions is larger than that of BH4, which increases with the increase in number of peripheral BH4 moieties (x). The hydrogen storage capacity of LiBH4  x(BH4)x complexes is higher but binding energy is smaller than that of LiBH4, a typical complex hydride. The linear correlation between the dehydrogenation energy of LiBH4  x(BH4)x complexes and the VDE of BH4  x(BH4)x anions is established. These complexes are found to be thermodynamically stable against dissociation into LiBH4 and borane. This study demonstrates the role of superhalogens in designing new materials for hydrogen storage and should also motivate experimentalists to synthesize LiBH4  x(BH4)x (x = 1–4) complexes.  相似文献   

15.
The interaction of Momordica charantia (bitter gourd) seed lectin (MCL) with several nucleic acid bases has been investigated by monitoring changes induced in the protein fluorescence by ligand binding. Values of the binding constant, Ka were obtained as 1.1 × 104, 1.56 × 104 and 2.2 × 103 M?1 for adenine, cytosine and uracil, respectively. In addition, binding of 8-anilinonaphthalene 1-sulfonate (ANS) with MCL was investigated by fluorescence spectroscopy. Interaction with MCL at low pH results in a large enhancement of the fluorescence intensity of ANS with a concomitant blue shift in the emission λmax, whereas at neutral and basic pH changes in both fluorescence intensity and emission maximum were very small, clearly suggesting that the MCL–ANS interaction is stronger at lower pH values. When excited at 295 nm in the presence of ANS, the protein fluorescence decreased with a concomitant increase in the emission intensity of ANS, suggesting resonance energy transfer from the tryptophan residues of MCL to ANS. Gel filtration profiles of MCL at pH values 2.0 and 7.4 are similar indicating that the tetrameric nature of MCL is retained even at low pH. Addition of lactose or adenine to MCL–ANS mixture did not alter the change in ANS fluorescence suggesting that lactose, adenine and ANS bind to MCL at independent and non-interacting sites. These results are relevant to understanding the functional role of MCL in the parent tissue.  相似文献   

16.
Hydrogenated amorphous carbon (a-C:H) films with silicon and oxygen additions, which exhibit mechanical, tribological and wetting properties adequate for protective coating performance, have been synthesized at room temperature in a small- (0.1 m3) and a large-scale (1 m3) coaters by low-pressure Plasma-Activated Chemical Vapour Deposition (PACVD). Hence, a-C:H:Si and a-C:H:Si:O coatings were produced in atmospheres of tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO), respectively, excited either by radiofrequency (RF – small scale) or by pulsed-DC power (large scale). Argon was employed as a carrier gas to stabilize the glow discharge. Several series of 2–5 μm thick coatings have been prepared at different mass deposition rates, Rm, by varying total gas flow, F, and input power, W. Arrhenius-type plots of Rm/F vs. (W/F)?1 show linear behaviours for both plasma reactors, as expected for plasma polymerization processes at moderated energies. The calculation of apparent activation energy, Ea, in each series permitted us to define the regimes of energy-deficient and monomer-deficient PACVD processes as a function of the key parameter W/F. Moreover, surface properties of the modified a-C:H coatings, such as contact angle, abrasive wear rate and hardness, appear also correlated to this parameter. This work shows an efficient methodology to scale up PACVD processes from small, lab-scale plasma machines to industrial plants by the unique evaluation of macroscopic parameters of deposition.  相似文献   

17.
Two new Ru(II) complexes, [Ru(bpy)2(1-COO-iqu)]+ (2; bpy = 2,2′-bipyridine, 1-COO-iqu? = isoquinoline-1-carboxylate) and [Ru(bpy)2(3-COO-iqu)]+ (3; 3-COO-iqu? = isoquinoline-3-carboxylate), were prepared and their crystal structures solved. The ground and excited state properties of 2 and 3 were characterized and compared to those of [Ru(bpy)3]2+ (1). The presence of the oxygen atom in the Ru(II) coordination sphere makes 2 and 3 easier to oxidize than 1. The Ru  bpy MLCT absorption and emission of 2 and 3 are red-shifted relative to that of 1 in CH2Cl2, and the E00 energies were estimated to be 1.89 eV and 1.95 eV from the low temperature emission of 2 and 3, resulting in excited state oxidation potentials of ?1.03 V and ?1.10 V vs SCE, respectively. In addition to the short-lived emissive 3MLCT state, a long-lived species is observed in the transient absorption of 3 in DMSO (τ = 49 μs) and pyridine (τ = 44 μs), assigned to a solvent-coordinated complex. This intermediate is not observed for 3 in non-polar solvents or for 2. The absence of the solvent coordinated intermediate in 2 is explained by the stronger Ru–O bond afforded by the lower conjugation in that extends onto the carboxylic acid in the 1-COO-iquo?ligand, compared to that in the 3-COO-iqu?ligand in 3. Transient absorption experiments also show that the 3MLCT excited state of 3 is able to reduce methyl viologen.  相似文献   

18.
19.
A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A2[(UO2)2(MoO4)O2], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K2[(UO2)2(MoO4)O2] was determined using HF-solution calorimetry giving ΔfH° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = −(4018 ± 8) kJ · mol−1. The low-temperature heat capacity, Ср°, was measured using adiabatic calorimetry from T = (7 to 335) K for K2[(UO2)2(MoO4)O2] and from T = (7 to 326) K for Rb2[(UO2)2(MoO4)O2]. Using these Ср° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K−1 · mol−1 for K2[(UO2)2(MoO4)O2] and (390 ± 1) J · K−1 · mol−1 for Rb2[(UO2)2(MoO4)O2]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, ΔfG°, for both phases giving: ΔfG° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = (−3747 ± 8) kJ · mol−1 and ΔfG° (T = 298 K, Rb2[(UO2)2(MoO4)], cr) = −3736 ± 5 kJ · mol−1. Smoothed Ср°(Т) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T)  H°(0)] and [G°(T)  H°(0)], for both phases. The stability behaviour of various solid phases and solution complexes in the (K2MoO4 + UO3 + H2O) system with and without CO2 at T = 298 K was investigated by thermodynamic model calculations using the Gibbs energy minimisation approach.  相似文献   

20.
Elemental analysis for the synthesized crystalline lamellar compound conforms to the formula Ba(H2PO4)2 and the X-ray diffraction patterns is in agreement with the lamellar structure for this compound. The precursor host was intercalated with a series of n-alkylmonoamines of the general formula H3C(CH2)n-NH2 (n = 1 to 4) in aqueous solution. The lamellar host was calorimetrically titrated with an aqueous amine solution at T = (298.15 ± 0.02) K and the enthalpy, Gibbs free energy and entropy were calculated. The enthalpic values increased, although not uniformly, with the number of carbon atoms is the amine chain, to give (−13.96 ± 0.12, −14.00 ± 0.48, −15.75 ± 0.23, −16.05 ± 0.11) kJ · mol−1, from n = 1 to 4. The exothermic enthalpy, the negative Gibbs free energy and positive entropic values are in agreement with the favourable energetic process of intercalation for this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号