首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polycrystalline samples of AgCuF3, isostructural with NaCuF3, were synthesized by solid state reaction and characterized by powder X-ray diffraction. The magnetic properties of AgCuF3 and NaCuF3 were examined by measuring their magnetic susceptibilities and evaluating their spin exchange interactions. The three-dimensional CuF3 network of corner-sharing CuF6 octahedra present in AgCuF3 and NaCuF3 shows a cooperative Jahn–Teller distortion such that their magnetic susceptibilities above 50 K are well described by an S = 1/2 Heisenberg uniform antiferromagnetic chain model with average spin exchange of J/kB  ?300 and ?180 K, respectively. The relative strengths of these interactions are well reproduced by spin dimer analysis based on tight-binding calculations, but not by mapping analysis based on first principles density functional calculations.  相似文献   

2.
The effects of acceptor–donor interactions in thienyl substituted benzimidazole-nitronyl nitroxides (TBNN) on the absorption spectroscopy, spin density distribution, magnetic behavior, and crystallographic packing were explored through spectroscopy, computation, and characterization of structure and magnetic properties in the crystalline phase. The electronic spectra of the radicals exhibit a strong broad absorption in the NIR (λmax  1000 nm) that exhibits solvatochromism consistent with charge transfer between the thienyl (donor) and benzonitronyl nitroxide (acceptor) dyads. Computational analysis allowed assignment of the transition as a HOMO–SOMO transition (TD-DFT UB3LYP/6-31G7). The TBNN radicals form highly disordered slipped π-stacks in the solid state that give rise to antiferromagnetic interactions consistent with 1D chain interactions. The magnetic behavior was well-fit to a Bonner–Fisher model to give exchange parameters of J = ?2 to ?10 cm?1 depending on substitution. The weak exchange parameters are attributed to the degree of solid-state disorder, and the observed properties can be rationalized by the effects of substitution on the electronic structure and topology of the radicals.  相似文献   

3.
《Polyhedron》2007,26(9-11):2161-2164
Theoretical methods based on density functional theory have been employed to analyze the exchange interactions in a Fe9W12 polyoxometalate complex. The calculated values of the seven exchange coupling constants required by the molecular structure agree well with those reported previously for other FeIII polynuclear complexes and give an S = 15/2 single determinant ground state, with a first excited state that has S = 5/2.  相似文献   

4.
The H–D exchange processes in MHn or MDn hydrides (M = As, Sb, Bi, n = 3; M = Ge, Sn, n = 4) taking place when they are in contact with H2O or D2O solution at different pH or pD values (interval of pH = [0,13]) have been investigated using gas chromatography–mass spectrometry (GC-MS). MHn or MDn compounds were injected into the headspace of reaction vials (4–12 ml) containing 1–2 ml of buffered solution maintained under stirring or shaking conditions. The isotopic composition of the gaseous phase hydrides/deuterides was determined at regular intervals in the range of time 0–15 min. The MHn or MDn compounds were synthesized in separate vials and their purity was checked separately before injection into the reaction vials. The mass spectra were deconvoluted in order to estimate the relative abundance of each species formed following the H–D exchange process (AsHnD3−n , SbHnD3−n, BiHnD3−n, n = 0–3; GeHnD4−n, SnHnD4−n, n = 0–4) and the relative abundance of H and D. In the investigated pH (or pD) interval arsanes and stibanes undergo H–D exchange in alkaline media for pH > 7. No H–D exchange was detected for the other hydrides, where the prevailing process is their decomposition in the aqueous phase. A reaction model, based on the formation of protonated or deprotonated intermediates is proposed for H–D exchange of MHn or MDn compounds placed in contact with H2O or D2O at different pH or pD values. The H–D exchange in the already formed hydrides can be source of the interference in mechanistic studies on hydride formation performed using labeled reagents; no H–D exchange was detected within the following pH intervals that can be considered free from interference: arsanes pH = [0,7), stibanes pH = [0,7), bismuthanes, germanes and stannanes pH = [0,13].  相似文献   

5.
We study the spin chain behavior, a transition to 3D magnetic order and the magnitudes of the exchange interactions for the metal-amino acid complex Cu(D,L-alanine)2∙H2O, a model compound to investigate exchange couplings supported by chemical paths characteristic of biomolecules. Thermal and magnetic data were obtained as a function of temperature (T) and magnetic field (B0). The magnetic contribution to the specific heat, measured between 0.48 and 30 K, displays above 1.8 K a 1D spin-chain behavior that can be fitted with an intrachain antiferromagnetic (AFM) exchange coupling constant 2J0=(−2.12±0.08) cm−1 (defined as ex(i,i+1) = −2J0Si⋅Si+1), between neighbor coppers at 4.49 Å along chains connected by non-covalent and H-bonds. We also observe a narrow specific heat peak at 0.89 K indicating a phase transition to a 3D magnetically ordered phase. Magnetization curves at fixed T = 2, 4 and 7 K with B0 between 0 and 9 T, and at T between 2 and 300 K with several fixed values of B0 were globally fitted by an intrachain AFM exchange coupling constant 2J0=(−2.27±0.02) cm−1 and g = 2.091±0.005. Interchain interactions J1 between coppers in neighbor chains connected through long chemical paths with total length of 9.51 Å cannot be estimated from magnetization curves. However, observation of the phase transition in the specific heat data allows estimating the range 0.1≤|2J1|≤0.4 cm−1, covering the predictions of various approximations. We analyze the magnitudes of 2J0 and 2J1 in terms of the structure of the corresponding chemical paths. The main contribution in supporting the intrachain interaction is assigned to H-bonds while the interchain interactions are supported by paths containing H-bonds and carboxylate bridges, with the role of the H-bonds being predominant. We compare the obtained intrachain coupling with studies of compounds showing similar behavior and discuss the validity of the approximations allowing to calculate the interchain interactions.  相似文献   

6.
《Polyhedron》2007,26(9-11):2121-2125
The hybrid organo-inorganic compounds [Cu4(bipy)4V4O11(PO4)2]nH2O (n  5) (1), [Cu2(phen)2(PO4)(H2PO4)2(VO2) · 2H2O] (2) and [Cu2(phen)2(O3PCH2PO3)(V2O5) (H2O)]H2O (3) which present different bridging forms of the phosphate/phosphonate group, show different bulk magnetic properties. We herein analyze the magnetic behaviour of these compounds in terms of their structural parameters. We also report a theoretical study for compound (1) assuming four different magnetic exchange pathways between the copper centres present in the tetranuclear unit. For compound (1) the following J values were obtained J1 = +3.29; J2 = −0.63; J3 = −2.23; J4 = −46.14 cm−1. Compound (2) presents a Curie–Weiss behaviour in the whole range of temperature (3–300 K), and compound (3) shows a maximum for the magnetic susceptibility at 64 K, typical for antiferromagnetic interactions. These data where fitted using a model previously reported in the literature, assuming two different magnetic exchange pathways between the four copper(II) centres, with J1 = −30.0 and J2 = −8.5 cm−1.  相似文献   

7.
《Polyhedron》2005,24(16-17):2579-2583
We have studied, by means of ab initio calculations, the magnetic interaction mechanisms in four radical crystals, X–C6F4–CNSSN (X = O2N, α-NC, β-NC, Br), which has allowed us to explain their different magnetic behaviour (ferromagnetism, antiferromagnetism, paramagnetism, spin frustration, etc.). First, we have identified the magnetic exchange pathways considering those with distances between two atoms of different dithiadiazolyl rings shorter than 7 Å and those with an intermolecular distance between an atom of the heterocyclic ring and an atom in a neighbouring radical shorter than 4 Å. Second, the calculations have been carried out in the framework of the DFT Broken Symmetry. Following this procedure we have determined the magnitude and the sign of the relevant coupling constants for the X–C6F4–CNSSN (X = O2N, α-NC, β-NC, Br) radicals. In the cases where the radicals order magnetically, ordering temperatures determined with our ab initio calculations agree very well with the experimental ones. Thus, in the case of the O2N derivative ferromagnetic ordering is observed below 1.3 K, in very good agreement with an ordering temperature around 1.6 K predicted from our calculated exchange constants and using a mean field approximation.  相似文献   

8.
In the present work we report a reaction in which dimethyl sulfoxide, initially used as solvent, undergoes oxidation to form sulfate, which then participates to the formation of a linear one-dimensional copper chain. Indeed, using [Cu(bipy)Cl2], a building block largely applied in synthesis of molecular magnetic compounds, the coordination compound [Cu(bipy)(H2O)2(SO4)]n, where bipy = 2,2′-bipyridine was obtained. Magnetic characterization of complex shows a weak antiferromagnetic interaction between the copper(II) ions with J = ?0.53 cm?1. DFT calculations demonstrate that the pathway for the weak antiferromagnetic interaction is through the sulfate bridge.  相似文献   

9.
《Polyhedron》2005,24(16-17):2242-2249
Two heterobimetallic coordination polymers, [Cu(2,4-pydc)2Mn(H2O)4]x (1) and [Cu(2,5-pydc)2Mn(H2O)2]x · 4xH2O (2), have been synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds have extended 2-D sheet structures. In 1 the copper centers are linked in chains by double ligand bridges and these chains are cross-linked through the manganese coordination spheres and O–C–O bridges to form polymeric sheets. In 2 separate O–C–O bridged Cu and Mn chains are connected in an alternating array by additional ligand bridging to generate the overall 2-D structure. Analysis of magnetic data of 1 reveals that ferromagnetic exchange between the O–C–O bridged copper and manganese centers dominates the magnetic properties of this system. The magnetic data for 2 fit well to a model incorporating antiferromagnetic exchange in independent S = 1/2 and S = 5/2 linear chains with J(Cu) = −0.073 cm−1 and J(Mn) = −0.32 cm−1. Unlike the situation in 1, there is no evidence for heterometallic exchange. In both 1 and 2 the significant exchange occurs via O–C–O bridges. To study the effect of thermal dehydration on the magnetic properties of these systems, the compounds Cu(2,4-pydc)2Mn · H2O (1d) and Cu(2,5-pydc)2Mn · H2O (2d) were synthesized and studied.  相似文献   

10.
[FeIII4(acac)6(Br-mp)2] (1) and [FeIII4(acac)6(tmp)2] (2) were obtained from the reaction of Fe(acac)2 with the appropriate tripodal alcohol. Both magnetic clusters show clear signatures for ferrimagnetic super exchange coupling. A fit of the DC susceptibility of 1 with the Kambe model gives J = ?8.2 ± 0.2 cm?1, with g = 1.96 ± 0.02. Powder AC susceptibility data display significant frequency dependence for both compounds. The observation of an out-of-phase component demonstrates that these molecules may be single-molecule magnets (SMMs). AC susceptibility data for frozen solutions of 1 and 2 in toluene also show an out-of-phase signal proving these molecules are SMMs in solution. Going from powder to solution, the χ″ signals shift to higher temperatures which points towards an increase in energy barrier for the magnetization relaxation.  相似文献   

11.
The new double-Schiff-base ligand H6ipa-bhea has been synthesized by condensation of a 4,6-diformylresorcinol derivative (ipa) with two equivalents of N,N-bis-(2-hydroxyethyl)ethylenediamine (bhea). Reaction with copper(II) perchlorate leads to the formation of two different products depending on the reaction conditions. The directed synthesis of either a mononuclear or dinuclear copper(II) complex is reported. The reaction in methanol results in the formation of a dinuclear complex [Cu2(H4ipa-bhea)](ClO4)2 (1). Whereas in the presence of water as solvent for the reaction, one imine side chain of the ligand is hydrolyzed regenerating the formyl moiety with the mononuclear complex [Cu(H3hyforsa-bhea)]ClO4 · 2H2O (2) as final product. Subsequent reaction of complex 2 with N,N-bis-(pyridin-2-ylmethyl)ethylenediamine (unspenp) as additional amine component results in the formation of the mononuclear complex [Cu(Hhyforsa-unspenp)]ClO4 (3). All complexes are characterized by IR spectroscopy, elemental analysis and X-ray crystallography. Temperature-dependent magnetic measurements on the dinuclear complex indicate weak antiferromagnetic exchange interactions between the copper(II) ions with a coupling constant of J = ?16.4 cm?1. Density functional calculations have been used to evaluate the magnetic properties. The exchange coupling constant can be nicely reproduced with the use of the broken symmetry approach. The exchange pathway through the meta-phenylene-linkage is discussed in terms of a competitive spin-polarization and superexchange mechanism as well as geometrical changes at the copper(II) ions.  相似文献   

12.
We successfully isolated a new paramagnetic bidentate ligand tert-butyl 5-methoxy-2-pyridyl nitroxide (meopyNO). Complexation of nickel(II) and copper(II) perchlorates with meopyNO gave the corresponding ML2-type bis-chelated compounds. The magnetic studies showed that they were ground high-spin molecules with 2J/kB = +288(5) and +178(3) K for [M(meopyNO)2(H2O)2] · (ClO4)2 (M = Ni and Cu, respectively), where the spin Hamiltonian is defined as H = ?2J(S1 · S2 + S2 · S3). From the crystallographic analysis, the torsion angles (?) around M–O–N–C2py were 4.2(3)° and 6.87(19)°, respectively, being so small that the orthogonality between the magnetic radical π1 and the metal dσ orbitals would be guaranteed.  相似文献   

13.
Extended metal atom chains (EMACs) are molecular linear arrangements of metal atoms featuring magnetic properties. By means of the density functional theory (DFT), we have studied the magnetic coupling constants for [Cu3(dpa)4Cl2]+, Ni3(dpa)4Cl2 and Ni5(tpda)4Cl2 to understand which is the origin of the previously reported theoretical underestimation of J for nickel complexes. We have decomposed J = Jσ + Jδ, finding that the former contribution is underestimated and the latter part is overestimated at the DFT/B3LYP level of computation. Varying the amount of Hartree-Fock exchange, we show that the B3LYP functional fails to describe the σ interaction properly, whereas the δ coupling is exaggerated.  相似文献   

14.
《Chemical physics letters》2006,417(1-3):143-148
Nonadiabatic transitions through spin–orbit interaction for the C(3PJ) + H2(2B1) reaction were investigated by ab initio electronic structure calculations and quantum reactive scattering calculations. It has been found that the reactivity for the J = 0 and J = 1 states is quite large. Ab initio direct trajectory calculations on the lowest doublet potential energy surface have also been carried out in order to understand the HNC production mechanism. We have found that HNC is mostly produced via direct mechanism, in which the H elimination occurs directly from the CNH2 intermediate, initially formed by the addition of C to NH2.  相似文献   

15.
A new layered compound, K4Mn3(HPO4)4(H2PO4)2 (1), has been synthesized under hydrothermal conditions. It crystallizes in the monoclinic space group P21/n with a = 8.874(2) Å, b = 6.554(1) Å, c = 18.075(4) Å, and β = 93.39(3)°. The structure consists of zigzag [Mn3O14]n chains of edge-sharing MnO6 octahedrons and MnO7 pentagonal bi-pyramids, which form layers of formula [Mn3(HPO4)4(H2PO4)2]4? in the ab plane via H2PO4 and HPO4 units with vertex-sharing. Potassium ions lie between these layers. Magnetic measurements indicate Curie–Weiss behavior above 6 K for 1. A Heisenberg model, with alternating exchange interactions J1J1J2… within the chain and exchange interactions J3J3… between the chains, is proposed to describe the magnetic behavior.  相似文献   

16.
《Polyhedron》2007,26(9-11):1849-1858
Three compounds composed of phenazine and copper chloride have been prepared and studied by infrared spectroscopy, X-ray diffraction, and variable temperature magnetization. The compounds synthesized and studied are: Cu(phenazine)Cl2 (1), (phenazinium)2CuCl4 · H2O (2), and [Cu(phenazine)Cl2 · H2O]2 (3). Compounds 1 and 2 are described as antiferromagnetic Heisenberg chains with exchange constants ∣J∣/kB = 33.8 K and 8.6 K, respectively.  相似文献   

17.
《Polyhedron》2007,26(9-11):1890-1894
We have designed and synthesized new biradicals of p-phenylene-bis(nitronyl nitroxide) substituted with two methoxy groups at 2,3- (2) and 2,5-positions (3). A parent biradical p-phenylene-bis(nitronyl nitroxide) (1) has intramolecular antiferromagnetic exchange interaction of 2J/kB = −104 K  −106 K with a torsion angle of 28.5° between the phenyl and the imidazole rings of nitronyl nitroxide. X-ray crystal structure analysis shows that the bulky substituents in 2 and 3 give large torsion angles of 65–70°. The larger torsion angles should weaken the magnitude of intramolecular exchange interactions, which is attributed to a decrease in π-conjugation over the p-phenylene and the radical groups. Magnetic susceptibility measurements indicate that the intramolecular exchange interactions in 2 and 3 are severely weakened to about 6% of that in 1, 2J/kB = −6 K  −8 K. The relation between the torsion angle and the intramolecular exchange interaction is consistent with DFT calculations. The ground-state singlet biradicals with suppressed intramolecular exchange interactions can be a building block for exotic exchange-coupled spin systems as predicted in our theoretical studies.  相似文献   

18.
In this paper, we discuss the synthesis and electrochemical properties of a new material based on iron oxide nanoparticles stabilized with poly(diallyldimethylammonium chloride) (PDAC); this material can be used as a biomimetic cathode material for the reduction of H2O2 in biofuel cells. A metastable phase of iron oxide and iron hydroxide nanoparticles (PDAC–FeOOH/Fe2O3-NPs) was synthesized through a single procedure. On the basis of the Stokes–Einstein equation, colloidal particles (diameter: 20 nm) diffused at a considerably slow rate (D = 0.9 × 10? 11 m s? 1) as compared to conventional molecular redox systems. The quasi-reversible electrochemical process was attributed to the oxidation and reduction of Fe3+/Fe2+ from PDAC–FeOOH/Fe2O3-NPs; in a manner similar to redox enzymes, it acted as a pseudo-prosthetic group. Further, PDAC–FeOOH/Fe2O3-NPs was observed to have high electrocatalytic activity for H2O2 reduction along with a significant overpotential shift, ΔE = 0.68 V from ? 0.29 to 0.39 V, in the presence and absence of PDAC–FeOOH/Fe2O3-NPs. The abovementioned iron oxide nanoparticles are very promising as candidates for further research on biomimetic biofuel cells, suggesting two applications: the preparation of modified electrodes for direct use as cathodes and use as a supporting electrolyte together with H2O2.  相似文献   

19.
The magnetic interactions between two C60 anions are investigated by using unrestricted B3LYP (UB3LYP) calculations. Among four types of interactions, only one type of SOMO–SOMO interaction shows a week ferromagnetic interaction (Jab = 4.6 cm?1) whilst other interactions show week anti-ferromagnetic interactions. In order to explain a mechanism of the ferromagnetic and the anti-ferromagnetic interactions, a natural orbital (NO) analysis and a spin density analysis are carried out. The results of the analyses suggest that orbital orthogonality between SOMOs of each C60 anions is the origin of the ferromagnetic interaction. On the other hand, a spin polarization effect does not appear in a spin density map in the ferromagnetic coupling state.  相似文献   

20.
Bis(NN–CH2)-substituted dimethylcyclam (cyclamNN2) was designed and synthesized as a paramagnetic host, where NN stands for 4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide. We prepared transition-metal complexes [M(cyclamNN2)](ClO4)2 (M = Cu (1), Ni (2)) and investigated their metal–radial exchange couplings. The copper ion in 1 is located at the center of the cyclam cavity and one radical arm is coordinated at an axial position. Compound 1 showed ferromagnetic coupling (2J/kB = +44(3) K), which is ascribable to the NN–Cu coupling. Ferromagnetic coupling was also observed in 2, but the molecular structure was unknown at present. The Curie–Weiss analysis gave the Weiss temperature (θ) of +13.5(6) K for 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号