首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

2.
The synthesis, structures and magnetism of the complexes [FeII(3-bpp)2][bpmdcK](SeCN)1.7(ClO4)1.3·MeOH·H2O (1), [FeII(3-bpp)2]4[bpmdcH2(H2O)2](ClO4)10·7H2O·3MeOH (2) and cis-[FeII2(NCSe)2((3,5-Me2pz)3CH)2(μ-bpmdc)]·2MeCN (3) (where 3-bpp = 2,6-di(pyrazole-3yl)pyridine, bpmdc = N,N′-bis(4-pyridyl-methyl)diaza-18-crown-6) and (3,5-Me2pz)3CH = tris(3,5-dimethylpyrazole)methane, are presented. These compounds form a study of the supramolecular influence of host–guest/crown-ether interactions and cation-to-crown hydrogen-bonding effects upon d6 spin transitions, the latter occurring above, or near to, room temperature in 1 and 2. Desolvation effects also influence the T1/2 values. The dinuclear compound 3 contains covalent pyridyl (crown) N to Fe bridge bonding and remains high spin.  相似文献   

3.
《Polyhedron》2007,26(9-11):2121-2125
The hybrid organo-inorganic compounds [Cu4(bipy)4V4O11(PO4)2]nH2O (n  5) (1), [Cu2(phen)2(PO4)(H2PO4)2(VO2) · 2H2O] (2) and [Cu2(phen)2(O3PCH2PO3)(V2O5) (H2O)]H2O (3) which present different bridging forms of the phosphate/phosphonate group, show different bulk magnetic properties. We herein analyze the magnetic behaviour of these compounds in terms of their structural parameters. We also report a theoretical study for compound (1) assuming four different magnetic exchange pathways between the copper centres present in the tetranuclear unit. For compound (1) the following J values were obtained J1 = +3.29; J2 = −0.63; J3 = −2.23; J4 = −46.14 cm−1. Compound (2) presents a Curie–Weiss behaviour in the whole range of temperature (3–300 K), and compound (3) shows a maximum for the magnetic susceptibility at 64 K, typical for antiferromagnetic interactions. These data where fitted using a model previously reported in the literature, assuming two different magnetic exchange pathways between the four copper(II) centres, with J1 = −30.0 and J2 = −8.5 cm−1.  相似文献   

4.
A novel series of 4,4′-bipyridine- and 1,2-bis(4-pyridyl)ethane-Cu(II) complexes were synthesized using a variety of amine ligands (DPA = di(2-pyridylmethyl)amine, Medpt = 3,3′-diamino-N-methyldipropylamine, Hbpca = bis(2-pyridylcarbonyl)amine, TPA = tris(2-pyridylmethyl)amine) and cyclen = 1,4,7,10-tetraazacyclododecane). Different complexes were obtained including mononuclear [Cu(cyclen)(4,4′-bipy)](ClO4)2 (1), dinuclear {[Cu(μ2-bpca)(4,4′-bipy)(H2O)]ClO4}2 (2), [Cu2(DPA)22-4,4′-bipy)(ClO4)4)]·H2O (3), [Cu2(cyclen)22-bpe)](ClO4)4 (4) and [Cu2(TPA)22-bpe)](ClO4)4 (5) and the 1-D polymer, {[Cu(Medpt)(μ2-4,4′-bipy)](ClO4)2}n (6). In the 16 samples, cooling up to 100 K produces only the expected, minor, changes in cell constants given no space group changes. Therefore, data for the 100 K structures are reported only. Single-crystal X-ray crystallography reveals the monodentate coordination of the 4,4′-bipy in 1 and 2, and the bridged nature of the di-pyridyl ligands in the dinuclear complexes 25 and in the polymeric complex 6. In this series, structures 36 consist of the 4,4′-bipy or bpe bridging the two Cu(II) centers, the coordination by the tri- or the tetra-N donors of the amine, and the ClO4? groups as counter ions in 46 complexes. In the complexes 36, the Cu···Cu distances across the bridged di-pyridyl ligands were found to be greater than 11 Å. The magnetic properties of complex 3 reveal no evidence for magnetic coupling between the two Cu(II) centers (J = ?0.58 cm?1).  相似文献   

5.
Syntheses of three benzaldazine compounds 13 with the general formula Ar1(CH = N–N = HC)Ar2 (Ar1 = Ar2 = 2-OH-3,5-tBu2C6H2 (1), Ar1 = Ar2 = 2-BrC6H4 (2), Ar1 = ortho-C6H4(NHC6H3-Me2-2,6), Ar2 = C6H4F-2 (3)) are described. All compounds were characterized by elemental analysis, 1H NMR, 13C NMR, IR spectroscopy and single-crystal X-ray crystallography. The different supramolecular structures were obtained through different weak interactions (C ? H···O, O ? H···N and π···π interactions for 1; C ? H···Br and Br···Br interactions for 2; C ? H···F and C ? H···N interactions for 3). Compound 1 shows solvent-dependent fluorescent properties with blue to green emission on the increasing of the solvent polarity. Compounds 2, 3 show blue photoluminescence in different solvents.  相似文献   

6.
The reaction of Cu(ClO4)2·6H2O with dimethylglyoxime (H2dmg) in a 1:1 mole ratio in aqueous methanol at room temperature affords the dinuclear complex [Cu2(μ-Hdmg)4] (1). Reaction of 1 with [Cu(bpy)(H2O)2](ClO4)2 (bpy = 2,2′-bipyridine) in a 1:1 mole ratio in aqueous methanol at room temperature yields the tetranuclear complex [Cu4(μ-Hdmg)2(μ-dmg)2(bpy)2(H2O)2](ClO4)2 (2). The direct reaction of Cu(ClO4)2·6H2O with H2dmg and bpy in a 2:2:1 mole ratio in aqueous methanol at room temperature also yields 2 quantitatively. The complexes 1 and 2 were structurally characterized by X-ray crystallography. Unlike the binding in Ni/Co-dmg, two different types of N?O bridging modes during the oxime based metallacycle formation and stacking of square planar units have been identified in these complexes. The neutral dinuclear complex 1 has CuN4O coordination spheres and complex 2 consists of a dicationic [Cu4(μ-Hdmg)2(μ-dmg)2(bpy)2(H2O)2]2+ unit and two uncoordinated ClO4? anions having CuN4O and CuN2O3 coordination spheres. The two copper(II) ions are at a distance of 3.846(8) Å in 1 for the trans out of plane link and at 3.419(10) and 3.684(10) Å in 2 for the trans out of plane and cis in plane arrangements, respectively. The average Cu–Noxime distances are 1.953 and 1.935 Å, respectively. The average basal and apical Cu?Ooxime distances are 1.945, 2.295 and 2.429 Å. The UV–Vis spectra of 2 is similar to the spectrum of the reaction mixture of 1 and [Cu(bpy)(H2O)2]2+. Variable temperature magnetic properties measurement shows that the interaction between the paramagnetic copper centers in complex 1 is antiferromagnetic in nature. The EPR spectra of frozen solution of the complexes at 77 K consist of axially symmetric fine-structure transitions (ΔMS = 1) and half-field signals (ΔMS = 2) at ca. 1600 G, suggesting the presence of appreciable Cu–Cu interactions.  相似文献   

7.
8.
《Polyhedron》2005,24(16-17):2242-2249
Two heterobimetallic coordination polymers, [Cu(2,4-pydc)2Mn(H2O)4]x (1) and [Cu(2,5-pydc)2Mn(H2O)2]x · 4xH2O (2), have been synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds have extended 2-D sheet structures. In 1 the copper centers are linked in chains by double ligand bridges and these chains are cross-linked through the manganese coordination spheres and O–C–O bridges to form polymeric sheets. In 2 separate O–C–O bridged Cu and Mn chains are connected in an alternating array by additional ligand bridging to generate the overall 2-D structure. Analysis of magnetic data of 1 reveals that ferromagnetic exchange between the O–C–O bridged copper and manganese centers dominates the magnetic properties of this system. The magnetic data for 2 fit well to a model incorporating antiferromagnetic exchange in independent S = 1/2 and S = 5/2 linear chains with J(Cu) = −0.073 cm−1 and J(Mn) = −0.32 cm−1. Unlike the situation in 1, there is no evidence for heterometallic exchange. In both 1 and 2 the significant exchange occurs via O–C–O bridges. To study the effect of thermal dehydration on the magnetic properties of these systems, the compounds Cu(2,4-pydc)2Mn · H2O (1d) and Cu(2,5-pydc)2Mn · H2O (2d) were synthesized and studied.  相似文献   

9.
《Comptes Rendus Chimie》2014,17(5):490-495
A new complex of [Ni3(dcp)2(H2O)10] (1) (H3dcp = 3,5-pyrazoledicarboxylic acid) has been synthesized from H3dcp and Ni(NO3)2·6H2O by hydrothermal reaction. Complex 1 has the discrete trinuclear structure. Three Ni(II) ions are bridged by two dcp3− ligands, with 10 coordinated water molecules as terminal ligands. The molecules of [Ni3(dcp)2(H2O)10] extend into three-dimensional supramolecular architectures by intermolecular O–H···O hydrogen bonds as well as π-π stacking interactions. Magnetic susceptibility measurement shows that a weak antiferromagnetic interaction is operative between nickel(II) ions and an excellent simulation of the experimental data gives D = 5.27 cm−1, J = −2.19 cm−1 and g = 2.05.  相似文献   

10.
《Polyhedron》2003,22(14-17):2183-2190
The self-assembly of [M(CN)8]3− (M=Mo, W) anion and polyamine complexes of CuII[Cu(tetren)]2+ and [Cu(dien)(H2O)2]2+ (tetren=tetraethylenepentamine, dien=diethylenetriamine) in acidic aqueous solution gives (tetrenH5)0.8{CuII 4[WV(CN)8]4}·7.2H2O 1, (tetrenH5)0.8{CuII 4[MoV(CN)8]4}·7.2H2O 2, (dienH3){CuII 3[WV(CN)8]3}·4H2O 3 and (dienH3){CuII 3[MoV(CN)8]3}·4H2O 4 2D coordination polymers. All compounds are structure-related: the crystal structures of isomorphous 12 and 34, respectively, consist of double-layered cyano-bridged {CuII[WV(CN)8]}n square grid backbones and non-coordinated fully protonated polyamine countercations as well as H2O molecules located between the sheets. The magnetic measurements reveal long range ferromagnetic ordering with sharp phase transitions at TC in range 28–37 K and coercivity in range 30–225 Oe at liquid helium temperature, T=4.3 K.  相似文献   

11.
Three new heterometallic 1D coordination polymers [FeIII2Pr(4-Me-sal)4(2,2′-bipy)2(H2O)6](NO3) · 2MeOH · 1.5H2O (1), [FeIII2Gd(4-Me-sal)4(2,2′-bipy)2(H2O)5]Cl1/2(NO3)1/2 · 5H2O (2) and [FeIII2Dy(4-Me-sal)4(2,2′-bipy)2(H2O)5]Cl1/2(NO3)1/2 · 5H2O (3) have been synthesized. 1 and 2 were characterized by single-crystal X-ray crystallography, and 3 was shown to be isomorphous to 2 by X-ray powder diffraction. Magnetic studies show that the three compounds show a similar temperature dependence of their magnetic susceptibilities over the range 1.8–300 K. The observed decrease of χT with decreasing temperature for all three compounds could be the result of antiferromagnetic interactions between Fe–Ln centres and/or the depopulation of the Stark sublevels in the case of the anisotropic Ln ions (PrIII and DyIII).  相似文献   

12.
《Polyhedron》2007,26(9-11):1849-1858
Three compounds composed of phenazine and copper chloride have been prepared and studied by infrared spectroscopy, X-ray diffraction, and variable temperature magnetization. The compounds synthesized and studied are: Cu(phenazine)Cl2 (1), (phenazinium)2CuCl4 · H2O (2), and [Cu(phenazine)Cl2 · H2O]2 (3). Compounds 1 and 2 are described as antiferromagnetic Heisenberg chains with exchange constants ∣J∣/kB = 33.8 K and 8.6 K, respectively.  相似文献   

13.
Two new copper(II) complexes, [Cu2(L1)2](ClO4)2 (1) and [Cu(L2)(ClO4)] (2), of the highly unsymmetrical tetradentate (N3O) Schiff base ligands HL1 and HL2 (where HL1 = N-(2-hydroxyacetophenone)-bis-3-aminopropylamine and HL2 = N-(salicyldehydine)-bis-3-aminopropylamine) have been synthesised using a template method. Their single crystal X-ray structures show that in complex 1 two independent copper(II) centers are doubly bridged through phenoxo-O atoms (O1A and O1B) of the two ligands and each copper atom is five-coordinated with a distorted square pyramidal geometry. The asymmetric unit of complex 2 consists of two crystallographically independent N-(salicylidene)-bis(aminopropyl)amine-copper(II) molecules, A and B, with similar square pyramidal geometries. Cryomagnetic susceptibility measurements (5–300 K) on complex 1 reveal a distinct antiferromagnetic interaction with J = ?23.6 cm?1, which is substantiated by a DFT calculation (J = ?27.6 cm?1) using the B3LYP functional. Complex 1, immobilized over highly ordered hexagonal mesoporous silica, shows moderate catalytic activity for the epoxidation of cyclohexene and styrene in the presence of TBHP as an oxidant.  相似文献   

14.
15.
The new double-Schiff-base ligand H6ipa-bhea has been synthesized by condensation of a 4,6-diformylresorcinol derivative (ipa) with two equivalents of N,N-bis-(2-hydroxyethyl)ethylenediamine (bhea). Reaction with copper(II) perchlorate leads to the formation of two different products depending on the reaction conditions. The directed synthesis of either a mononuclear or dinuclear copper(II) complex is reported. The reaction in methanol results in the formation of a dinuclear complex [Cu2(H4ipa-bhea)](ClO4)2 (1). Whereas in the presence of water as solvent for the reaction, one imine side chain of the ligand is hydrolyzed regenerating the formyl moiety with the mononuclear complex [Cu(H3hyforsa-bhea)]ClO4 · 2H2O (2) as final product. Subsequent reaction of complex 2 with N,N-bis-(pyridin-2-ylmethyl)ethylenediamine (unspenp) as additional amine component results in the formation of the mononuclear complex [Cu(Hhyforsa-unspenp)]ClO4 (3). All complexes are characterized by IR spectroscopy, elemental analysis and X-ray crystallography. Temperature-dependent magnetic measurements on the dinuclear complex indicate weak antiferromagnetic exchange interactions between the copper(II) ions with a coupling constant of J = ?16.4 cm?1. Density functional calculations have been used to evaluate the magnetic properties. The exchange coupling constant can be nicely reproduced with the use of the broken symmetry approach. The exchange pathway through the meta-phenylene-linkage is discussed in terms of a competitive spin-polarization and superexchange mechanism as well as geometrical changes at the copper(II) ions.  相似文献   

16.
Two new hybrid materials, (C4H14N2)[MII(H2O)6](SO4)2·4H2O (MII: Co (I), Ni (II)), have been synthesised by slow evaporation method at room temperature and crystallographically characterized. They crystallise isotypically in the monoclinic system, space group P21/n, with the following unit-cell parameters a = 9.2285(3), b = 11.3333(4), c = 10.6693(4) Å, β = 109.004(2)°, Z = 2 and V = 1055.07(6) Å3 for I and a = 9.2127(2), b = 11.3182(2), c = 10.6434(2) Å, β = 109.094(1)°, Z = 2 and V = 1048.74(4) Å3 for II. The structure of the two supramolecular compounds consists of metallic cation octahedrally coordinated to six water molecules, sulfate anions, 1,4-butanediammonium cation and water molecules linked together via two types of hydrogen bonds, O–H?O and N–H?O. The two compounds are not stable at room temperature and their partial dehydration depends on the humidity of the environment. The thermal decomposition of precursors, studied by thermogravimetric analysis (TG) and temperature-dependent X-ray diffraction (TDXD), shows successive intermediate hydrates and crystalline anhydrous compounds upon dehydration.  相似文献   

17.
Four homotrinuclear linear coordination compounds with bridging ligand of (m-phenol)-1,2,4-triazole, [Mn3(L)6(H2O)6](ClO4)6 (1), [Ni3(L)6(H2O)6](BF4)6·4DMF (2), [Cd3(L)6(H2O)6](ClO4)6· 2H2O·2DMF·2EtOH (3), [Zn3(L)8(H2O)4](BF4)4(SiF6)·2EtOH·12H2O (4), have been synthesized and structurally determined. The structures consist of three metal ions in linear arrangements, linked to each other by two pairs of three N1, N2 bridging triazole ligands. The negative value of J suggests that antiferromagnetic interaction exists in 1. Green fluorescence of 2 and 4 with emissions at 518 nm for 2 and 524 for 4 is possibly assigned to LMCT. The energy gaps of the compounds 2 and 4 are 1.82 and 1.97 eV, respectively, which suggests that the two materials behave as semiconductors.  相似文献   

18.
By employing different organic amines as structure-directing agents, two new distinct 3D porous inorganic frameworks based on molybdenum(V) phosphates and MnII, (H2en)2{[Mn(H2O)]2[MnMo12O24(OH)6(H2PO4)2(HPO4)4(PO4)2]}·7H2O (en = ethylenediamine) (1) and (H3dien)2{[Mn(H3O)2][Mn3Mo12O24(OH)6(HPO4)2(PO4)6]}·5H2O (dien = diethylenetriamine) (2), have been hydrothermally synthesized, and characterized by routine physical methods. In compound 1, MnII all adopt octahedral coordination mode and each sandwich cluster Mn[Mo6P4O31]2 (abbreviated as Mn[Mo6P4]2) acts as an octa-dentate ligand linking eight MnII, which result in a 3D inorganic (4, 8)-connected framework with the (46)(410·612·86) topology. Compound 2 shows a 3D (4, 10)-connected framework with the (31·44·61)(34·49·57·617·74·84) topology, in which MnII ions exhibit both tetrahedral and octahedral coordination modes, and each Mn[Mo6P4]2 links ten MnII. Interestingly, there exist channels along the a and b axes in 1, while along the a and c axes in 2. The differences between the two compounds should be ascribed to the distinctions of the organic amines. Primary de-/rehydration behaviors and electrochemistry properties have also been studied for the two compounds.  相似文献   

19.
《Polyhedron》2005,24(16-17):2102-2107
Four complexes of M(NO3)2(4NOPy-OMe)2, (4NOPy-OMe = 4-(N-tert-butyloxylamino)-2-(methoxymethylenyl)pyridine, and M = MnII, 1; CoII, 2; NiII, 3; CuII, 4), were prepared and fully characterized. X-ray single crystal analysis reveals that four complexes are isostructural. The molecular structures are distorted octahedral in which the methoxy oxygen atoms coordinate to the metal ion by trans-configuration while the pyridyl nitrogen atoms and the nitrate oxygen atoms coordinate by cis-configuration. The magnetic properties of all complexes were investigated by SQUID magneto/susceptometry. Temperature dependence of the molar magnetic susceptibilities in the temperature range of 2–300 K indicated that the magnetic coupling between aminoxyl radicals and metal ion was antiferromagnetic in the complex 1 and were ferromagnetic in the complexes 24. The quantitative analysis based on the spin Hamiltonian, H = −2J(S1SM + SMS2) yielded the best fit as J/kB = −13.4 ± 0.1 K, g = 1.94 ± 0.002, and θ = −0.78 ± 0.02 K for the complex 1, J/kB = 48.7 ± 2.1 K, g = 2.07 ± 0.02, and θ = −2.83 ± 0.41 K for the complex 3 (the data in the temperature range 300–50 K were used), and J/kB = 57.0 ± 1.2 K, g = 2.002 ± 0.004, and θ = −9.8 ± 0.1 K for the complex 4.  相似文献   

20.
New higly unsaturated macrocyclic building blocks [CuLSCN]·ClO4 (1) (L = N-dl-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) and [NiL(SCN)2] (2) (L = N-dl-5,12-dimethyl-7,14-diisopropyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) were synthesized and the crystal structures of both compounds were determined. Both complexes crystallizes in monoclinic, space group P21/n (1) and P21/c (2). Their magnetic properties were studied over the temperature range 1.8–300 K using a Quantum Design SQUID magnetometer (MPMSXL-5-type). The results indicate that both compounds behave as weakly interacting paramagnetic centers in the crystal lattice. The effects of hydrogen bond mediating the magnetic exchange interactions on the spin density have been evidenced by DFT calculations. The NIR–Vis–UV diffuse-reflectance electronic spectra confirm the square pyramidal and octahedral geometry around Cu2+ and Ni2+ metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号