首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recently, narrow electrostatic precipitators (ESPs) have become a subject of interest because of their possible application for the cleaning of the exhaust gases emitted by diesel engines. Diesel engines emit fine particles, which are harmful to human and animal health. There are several methods for decrease particulate emission from a diesel engines, but up to now, these methods are not enough effective or very expensive. Therefore, an electrostatic precipitation was proposed as an alternative method for control of a diesel particulate emission.In this work, results of electrohydrodynamic (EHD) secondary flow and particle collection efficiency measurements in a narrow wire-cylinder type ESP are presented. The ESP was a glass cylinder (300 mm × 29 mm) equipped with a wire discharge electrode and two collecting cylinder-electrodes. A 0.23 mm in diameter and 100 mm long stainless-steel discharge wire electrode was mounted in the center of the cylinder, parallel to the main flow direction. The collecting electrodes were made of stainless steel cylinders, each with a length of 100 mm and inner diameter of 25.5 mm. An air flow seeded with a cigarette smoke was blown along the ESP duct with an average velocity of 0.9 m/s.The EHD secondary flow was measured using 2-dimensional particle image velocimetry (PIV) method. The PIV measurements were carried out in the wire electrode mid-plane, perpendicularly to the wire and the collecting electrodes. The results show similarities and differences of the particle flow in the wire-cylinder type ESP for a negative and a positive DC voltage polarity.The collection efficiency was calculated from the fractional particle concentration. The fractional particle concentration was measured using the optical aerosol spectrometer. The results of the fractional collection efficiency confirmed the common view that the collection efficiency of fine particles in the ESP increases with increasing voltage and it is higher for negative voltage polarity and decreases when decreasing particle diameter.  相似文献   

2.
《Journal of Electrostatics》2006,64(7-9):498-505
In this work, results of two- and three-dimensional particle image velocimetry (PIV) measurements of the flow velocity fields in a wide spacing spike–plate electrostatic precipitator (ESP) under positive polarity are presented. A DC voltage of positive polarity (up to 28 kV) was applied to the spike electrode. The average gas flow velocity was 0.6 m/s. The PIV measurements were carried out in four planes perpendicular to the plate electrodes. Three parallel planes passed along the ESP while one plane passed across the ESP duct. The results show that electrohydrodynamic (EHD) secondary flow with relatively strong vortices exist in the ESP. The EHD secondary flow pattern depends on applied voltage and measuring plane position in respect to the spike tip. The strongest vortices occur in the plane passing through the tip of the upstream-directed spike. These relatively strong EHD vortices may hinder collection of the particles in the diameter range of 0.1–1 μm in the wide electrode spacing spike–plate ESPs.  相似文献   

3.
This work was aimed at measurements of the electrohydrodynamic (EHD) secondary flow in a non-thermal plasma reactor using three-dimensional particle image velocimetry (3D PIV) method. The wide-type non-thermal plasma reactor used in this work was an acrylic box with a wire discharge electrode and two plate collecting electrodes. The positive DC voltage was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The voltage applied to the wire electrode was 28 kV. Air flow seeded with a cigarette smoke was blown along the reactor duct with an average velocity of 0.6 m/s. The 3D PIV velocity fields measurements were carried out in four parallel planes stretched along the reactor duct, perpendicularly to the wire electrode and plate electrodes. The measured flow velocity fields illustrate complex nature of the EHD induced secondary flow in the non-thermal plasma reactor.  相似文献   

4.
Although improving electrostatic precipitator (ESP) collection of fine particles (micron and submicron sizes) remains of interest, it is not yet clear whether the turbulent flow patterns caused by the presence of electric field and charge in ESPs advance or deteriorate fine particle precipitation process. In this paper, results of the laser flow visualization and Particle Image Velocimetry (PIV) measurements of the particle flow velocity fields in a wire-to-plate type ESP model with seven wire electrodes are presented. Both experiments were carried out for negative and positive polarity of the wire electrodes. The laser flow visualization and PIV measurements clearly confirmed formation of the secondary flow (velocity of several tens of cm/s) in the ESP model, which interacts with the primary flow. The particle flow pattern changes caused by the strong interaction between the primary and secondary flows are more pronounced for higher operating voltages (higher electrohydrodynamic numbernehd) and lower primary flow velocities (lower Reynolds number Re). The particle flow patterns for the positive voltage polarity of the wire electrodes are more stable and regular than those for the negative voltage polarity due to the nonuniformity of the negative corona along the wire electrodes (tufts).  相似文献   

5.
Results of 2- and 3-dimensional Particle Image Velocimetry (PIV) measurements of the flow velocity fields in narrow electrostatic precipitators (ESPs) with either a longitudinal or transverse wire electrode are presented in this work. The obtained results confirmed that the particle flow in the ESP have a strongly 3D character mainly due to applied voltage and narrow cross section of the ESP duct. It was found that several vortices were formed along and across the ESP duct. The complex character of the flow in both ESP may considerably affect the particle collection efficiency of the ESP. This issue is under investigation.  相似文献   

6.
The novel electrohydrodynamically-assisted electrostatic precipitator (EHD ESP) was developed to suppress particle reentrainment for collection of low resistive diesel particulates. The collection efficiency was compared between vertically and horizontally oriented electrodes of the EHD ESP using 400 cc diesel engine. The particle size dependent collection efficiency was evaluated for the particle size ranging in 20 to 5000 nm using a scanning mobility particle sizer (SMPS) and a particle counter (PC). Both horizontally and vertically oriented EHD ESP showed an excellent suppression of particle reentrainment. However, the horizontally oriented electrode EHD ESP showed significantly improved for the particle size of 300–500 nm in comparison with vertically oriented electrode EHD ESP, resulting in more than 90% collection efficiency for all particle size range. The EHD ESP has high potential especially for highly concentrated marine diesel engine emission control.  相似文献   

7.
A CFD model was developed to describe the particle laden gas flow through an ESP, particle charging and collection. The corona discharge was modeled using the open source software OpenFOAM to solve the Poison and charge conservation equations, and results were entered using user-defined field functions in the commercial CFD software STAR-CCM+. The gas flow, EHD flow, particle charging and dynamics were modeled using STAR-CCM+. The developed CFD model allows for direct solution of the drift and diffusional flux of gas ions. The influence of the various ESP dimensions, operating parameters and ash properties on the collection efficiency are reported.  相似文献   

8.
《Journal of Electrostatics》2007,65(12):728-734
In this work, results of three-dimensional (3D) Particle Image Velocimetry (PIV) measurements of the electrohydrodynamic (EHD) flow velocity fields in a narrow electrostatic precipitator (ESP) with a longitudinal-to-flow placed wire electrode are presented. The ESP was a narrow transparent acrylic box (90 mm×30 mm×30 mm). The electrode set consisted of a single wire discharge electrode and two plane collecting electrodes. Either two smooth stainless-steel plates or two stainless-steel plane meshes with nylon flocks were used as the collecting electrodes. The 3D PIV measurements were carried out in two parallel planes, placed longitudinally to the flow duct. The positive DC voltage of up to 9.5 kV was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The measurements were carried out at a primary flow velocity of 0.5 m/s. Obtained results show that the flow patterns for the smooth-plate electrodes and for the flocking plane electrodes are similar in the bulk of the flow. However, the flow velocities near the flocking plane electrodes are much lower than those near the smooth-plate electrodes. This is a beneficial phenomenon, because the lower the flow near the collecting electrodes, the lower re-entrainment of the particles deposited on the collecting electrodes occurs.  相似文献   

9.
The aim of the present parametric study is to enhance the performances of a wire-to-square tube electrostatic precipitator (ESP) for the collection of submicrometer particles using dielectric barrier discharge (DBD). The input parameters under study are: the high voltage waveform, the wire electrode diameter, the collection electrode dimensions (width, discretization and number of collection sides) and the tube cross-section. The electrical measurements show that the discharge mode of the ESP is rather homogeneous. The particle collection efficiency as determined from aerosol spectroscopy measurements is higher at high applied voltage and within a certain frequency range. The parametric study of the ESP points out that using thicker wire electrodes as well as collection electrodes with different number of sides does not deteriorate the ESP performance. However, the penetration decreases with larger or discretized collection electrodes and larger tube cross-sections.  相似文献   

10.
《Journal of Electrostatics》2006,64(3-4):259-262
In this paper, the results of the particle image velocimetry measurements of the flow velocity fields in an intermediate spacing wire-to-plate type electrostatic precipitator (ESP) with a single positive polarity wire electrode are presented. The observation plane was placed perpendicular to the wire electrode at its half-length. The investigation showed significant influence of the electric field and charge on the flow patterns in the intermediate spacing ESP under an extreme large electrohydrodynamic (EHD) number. The EHD forces cause the formation of strong vortex pairs in the upstream and downstream ESP regions for Ehd/Re2>1.  相似文献   

11.
The electrostatic precipitator (ESP) has been extensively used for collecting aerosol particles emitted from coal combustion, but its collection efficiency of PM2.5 (Particulate matter whose aerodynamic diameter is less than 2.5 μm) is relatively low due to insufficient particle charging. The positive pulsed ESP is considered to enhance particle charging and improve collection efficiency. A laboratory-scale pulsed ESP with wire-plate electrode configuration was established to investigate the particle charging and penetration efficiency under controlled operating conditions of different applied impulse peak voltages, impulse frequencies, dust loadings and residence times. The results show that most particles larger than 0.2 μm are negatively charged, while most particles smaller than 0.2 μm are positively charged. For a given operating condition, the particle penetration efficiency curve has the highest penetration efficiency for particles with a diameter near 0.2 μm, and there is always a negative correlation between the particle penetration efficiency and the average number of charges per particle. Under the same operating conditions, the particle penetration efficiency decreases with increasing impulse peak voltage and impulse frequency, but increases as the dust loading increases. The results imply that residence time of 4 s is optimum for particle charging and collection. PM2.5 number reduction exceeding 90% was achieved in our pulsed ESP.  相似文献   

12.
This study presents the results of investigations of a hybrid electrostatic filtration system (HEFS), which combines an electrostatic precipitator (ESP) and a fibrous filter installed downstream of the ESP. The particles escaping from the ESP carry large amount of charge and this can increase the filtration efficiency of the fibrous filter. The filtration characteristics, including the efficiency, pressure drop and ozone generation, were investigated experimentally. The influence of system parameters, including the filter type, applied voltage, and distance between the ESP and fibrous filter on the overall efficiency were also studied. The measured results show that utilizing the non-high-efficient fibrous filter to remove the charged particle could provide a much higher efficiency without adding the pressure drop due to the electrostatic force. If the efficiency was similar, the ozone generated by HEFS was much lower than that of the single ESP. The results proved that filter efficiency increased with a higher applied voltage and higher initial mechanical filtration efficiency. The distance between the filter and ESP had no influence on the system filtration efficiency. The efficiency of filter in HEFS supplied with the positive voltage was slightly lower than for the negative voltage. In addition, the mathematical model was utilized to model the air filter efficiency in HEFS. The modeled and measured results agreed reasonably. Overall conclusion is that the HEFS could operate at a high efficiency with the lower applied voltage, ozone generation and pressure drop.  相似文献   

13.
In this paper, the structure of single wire-plate unit in electrostatic precipitator (ESP) was optimized and dust removal process in an entire ESP was investigated using computational fluid dynamics (CFD). Collection efficiency is higher in the center of the ESP, but becomes lower near the edges. High applied voltage, low inlet velocity and large particle diameter are beneficial for dust collecting. As particle concentration increases, collection efficiency increases at the beginning, then decreases. When particle diameter is smaller, inlet velocity and particle concentration is higher, particle trajectories become less stable as turbulence is more severe.  相似文献   

14.
本文采用PIV测量技术研究充分发展水平槽道内的两相湍流的变动规律(Re=590)。首先将单相湍流的测量结果与文献中DNS的结果进行了比较,证明了PIV测量湍流脉动的可行性,并通过引入PTV算法获得了近壁对数边界层内的湍流量。对两相流动的测量结果表明,即使在1%的低颗粒质量载荷下,气体湍流已有明显的变动,并且壁面附近和槽道中心的变动规律不同。  相似文献   

15.
Using electrostatic precipitators (ESPs) in filtration systems results in higher system energy efficiency than fiber-based filters, but particle re-entrainment could lower the collection efficiency of ESPs. This paper demonstrates a novel ESP that utilizes foam-covered collecting electrodes to reduce particle re-entrainment and enhance collection efficiency. Particles that settle down within the pores of the foam are less likely to re-enter the airflow. Results show that foam-covered ESPs have 99 percent collection efficiency. Parametric plots demonstrate the effects of the key design variables, such as corona voltage, repelling voltage, and free airflow velocity on collection efficiency.  相似文献   

16.
A high-temperature electrostatic precipitator (ESP) presents a good solution for hot gas cleaning, which can remove fly ash from pyrolysis gas at temperatures higher than the tar dew point. In this paper, the characteristics of negative DC corona discharge in air and simulated coal pyrolysis gas were studied. The removal of coal pyrolysis furnace fly ash (ash A) was investigated and compared with that of coal-fired power plant fly ash (ash B) in ESP with a temperature ranging from 300?K to 900?K. The current density of simulated gas was higher than that of air under the same discharge voltage and at different temperatures. The simulated gas also had a higher spark voltage and a lower onset voltage compared with air. The fractional collection efficiency of ash A was lower for particles with diameters of larger than 0.1?µm at high temperature, compared with ash B. A lower collection efficiency in simulated gas was obtained for particles with diameters of less than 0.1?µm compared with air. The collection efficiency of submicron particles in simulated gas was usually higher than it in air, especially for particles with diameters of less than 0.04?µm. In simulated gas, the overall collection efficiency of ash A was obviously lower than that of ash B, especially at high temperature. From 300?K to 700?K, the collection efficiencies of both ash samples were as high as above 93%, but the collection efficiency of ash A in simulated gas decreased to 78.7% at 900?K.  相似文献   

17.
This paper analyses corona discharge in ambient air with laboratory-scaled wire-to-plate electrostatic precipitator (WPESP). The electric field is behind the electro hydrodynamic (EHD) flow in air. Its measurements provide complementary results for the corona discharge study because the classical theory based on the current and voltage data is unsatisfactory. Taking into account the dynamic air flow velocity is perpendicular to the active wires, measurement method of the positive and negative DC corona current density and electric field, has been introduced. It has been shown also that the dynamic air flow velocity modifies the current density and the electric field distributions on the planes surfaces of the WPESP.  相似文献   

18.
In this paper, a new electrostatic precipitator (ESP) with asymmetrical wire-to-cylinder configuration is investigated experimentally and numerically. The main objective is to evaluate the collection efficiency of high resistivity particles.The electrical measurements show that the corona discharge behavior is similar to that obtained in symmetrical wire-to-cylinder configuration. Results show that the collection efficiency can reach 95% in the case of negative corona discharge.In order to understand the particle trajectories inside the ESP, the experimental results are compared with numerical simulation by using a coupled model. Numerical results indicate that particles can be collected on the collecting electrode backside.  相似文献   

19.
Secondary flow in a compound meandering channel with straight floodplain banks for overbank was investigated by a visualization method and velocity measurement using three-component laser Doppler anemometor (LDA). The secondary flow in a cross section was visualized by the neutral buoyant tracer method with a submergible video camera. Secondary flow vectors in a cross section were obtained by using PIV software with captured frames from video source through PC and also by LDA measurements. From the comparison of the PIV and LDA results, it is found that PIV data show good agreement in quality with LDA measurements when the secondary flow is strong and stable as shown in this paper.  相似文献   

20.
An experimental investigation and one-dimensional modeling have been conducted to study the mechanism of net flow direction induced by electrohydrodynamic (EHD) forces in a wire-non-parallel plate electrode type EHD gas pump. The experiments were conducted with various different locations of corona wire electrode for negative and positive applied voltage from 0 to 14 kV at atmospheric pressure and room temperature, where air was used as the working fluid. A one-dimensional cross-sectional averaged model based on mass and momentum conservation as well as Poisson electric field and ion transport equations was also developed. The results show that the net flow direction of electrohydrodynamically induced gas flow in a wire-non-parallel plate electrode system significantly depends on the location of the corona wire electrode relative to the grounded electrode position. The effect of conversion angle of non-parallel plate electrode on the net flow direction and pressure drop also was investigated and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号