首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metal templated Cd(II) cyclocondensation of 2,6-diacetylpiridine or 2,6-pyridinedicarbaldehyde and two different amines containing piperazine moieties have been investigated. The resulting ligands, L1 and L2 are 16- and L3 and L4 17-membered pentaaza macrocycles. The complexes have been characterized by a variety of methods including IR, 1H, 13C NMR, DEPT, COSY(H,H), HMQC(H,C), FAB spectrometry and conductivimetry measurements. The crystal structures of [CdL2Cl](CH3OH)ClO4 (2) and [CdL4(NO3)(H2O)]ClO4 (4) have been also determined, and it was shown that the geometry of the Cd(II) ion in the complexes is slightly distorted pentagonal pyramidal and pentagonal bipyramidal, respectively. The gas-phase structures of ligands, L2 and L4 and their Cd(II) complexes have also theoretically studied.  相似文献   

2.
A series of Mn(II) macrocyclic Schiff-base complexes [MnLnCl]+ (n = 1–4) have been prepared via the Mn(II) templated [1+1] cyclocondensation of 2,6-diacetylpyridine or 2,6-pyridinedicarbaldehyde with the symmetrical 1,4-bis(3-aminopropyl)piperazine or the novel asymmetrical N,N′(2-aminoethyl)(3-aminopropyl)piperazine linear amines containing piperazine moiety. The complexes have been characterized by elemental analyses, IR, FAB-MS, magnetic studies and conductivity measurements. The crystal structure of [MnL2(CH3OH)Cl](ClO4) and [MnL4Cl](PF6) complexes have also been determined showing the metal ion in a N4OCl pentagonal bipyramidal or N4Cl highly distorted octahedral geometry, respectively.  相似文献   

3.
Two symmetrical and asymmetrical Zn(II) complexes of a pentadentate (N5) macrocyclic Schiff-base ligands, were prepared via templated [1 + 1] cyclocondensation of 2,6-diacetylpyridine with two different amines containing piperazine moiety. The complexes have been characterized by a variety of methods including, IR, FAB mass spectrometry, elemental analysis and conductivity measurements. The crystal structure of the asymmetric complex, [ZnL1Br]ClO4 was determined by X-ray diffraction. It is shown that in the solid state the complex adopts a distorted pentagonal–pyramidal geometry, with the macrocycle in the pentagonal plane and the bromide ion in the axial position.  相似文献   

4.
A pentaaza (N5) 17-membered macrocyclic ligand (L) has been synthesized and its coordination capability toward perchlorate or nitrate salts of Mn(II), Pb(II) and Ag(I) has been investigated. The complexes were characterized by elemental analysis, IR, FAB mass spectrometry, magnetic studies, conductivity measurements, 1H and 13C NMR spectroscopy. The crystal structure of [PbL](ClO4)2 has been determined and it shows the presence of a mononuclear complex, with the Pb(II) ion coordinated to the five N donor atoms of the ligand in a hemidirected structure with the presence of a stereochemically active lone pair of electrons on the Pb(II) ion.  相似文献   

5.
Two macrocyclic Schiff base ligands, L1 [1+1] and L2 [2+2], have been obtained in a one-pot cyclocondensation of 1,4-bis(2-formylphenyl)piperazine and 1,3-diaminopropane. Unfortunately, because of the low solubility of both ligands, their separation was unsuccessful. In the direct reaction of these mixed ligands (L1 and L2) and the appropriate metal ions only [CoL1(NO3)]ClO4, [NiL1](ClO4)2, [CuL1](ClO4)2 and [ZnL1(NO3)]ClO4 complexes have been isolated. All the complexes were characterized by elemental analyses, IR, FAB-MS, conductivity measurements and in the case of the [ZnL1(NO3)]ClO4 complex with NMR spectroscopy.  相似文献   

6.
Neutral complexes of Co(II), Ni(II), Cu(II), and Zn(II) have been synthesized from the Schiff bases derived from 3-nitrobenzylidene-4-aminoantipyrine and aniline (L1)/p-nitro aniline (L2)/p-methoxy aniline (L3) in the molar ratio 1 : 1. The structural features have been determined from microanalytical, IR, UV-Vis, 1H-NMR, mass, and ESR spectral data. The Cu(II) complexes are square planar, while Co(II), Ni(II), and Zn(II) complexes are tetrahedral. Magnetic susceptibility measurements and molar conductance data provide evidence for the monomeric and neutral nature of the complexes. The X-band ESR spectrum of Cu(II) complexes at 300 and 77 K were recorded. The electrochemical behavior of the complexes in MeCN at 298 K was studied. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola, and Candida albicans by the well-diffusion method. Comparison of the inhibition values of the Schiff bases and their complexes indicate that the complexes exhibit higher antimicrobial activity.  相似文献   

7.
Transition Metal Chemistry - Three macroacyclic Schiff base complexes have been obtained by the reaction of a previously known Schiff base ligand,...  相似文献   

8.
The ligand 1,2-dimorpholinoethane (DME) was used to prepare Zn(II) and Ni(II) complexes of the general formulation MLX2 (L = DME, X = Cl or NO3). Zinc(II) complex exhibits spectral properties indicative of a distorted tetrahedral geometry, with DME coordinating through two nitrogen atoms and two chlorides completing the tetrahedron. This is in contrast to the six-coordinated, distorted octahedral geometry exhibited by nickel(II) complex of DME when NO3 was used as counter ions. The X-ray diffraction confirms the structures of two complexes and shows that the ligand coordinates through two nitrogen atoms while the two ether linkages are not involved in complexation, which would have been the case if the morpholine rings were in the boat form. The ligand and related complexes have antibacterial activity against the five Gram-positive bacteria: Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Streptococcus pyogenes and also against the three Gram-negative bacteria: Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442 and Klebsiella pneumonia ATCC 70063. The results showed that in some cases the antibacterial activity of the complexes exceeded the one of sulfisoxazole used as a standard.  相似文献   

9.
Reactions of the ruthenium complexes [RuH(CO)Cl(PPh3)3] and [RuCl2(PPh3)3] with hetero-difunctional S,N-donor ligands 2-mercapto-5-methyl-1,3,5-thiadiazole (HL1), 2-mercapto-4-methyl-5-thiazoleacetic acid (HL2), and 2-mercaptobenzothiazole (HL3) have been investigated. Neutral complexes [RuCl(CO)(PPh3)2(HL1)] (1), [RuCl(CO)(PPh3)2(HL2)] (2), [RuCl(CO)(PPh3)2(HL3)] (3), [Ru(PPh3)2(HL1)2] (4), [RuCl(PPh3)3(HL2)] (5), and [RuCl(PPh3)3(HL3)] (6) imparting κ2-S,N-bonded ligands have been isolated from these reactions. Complexes 1 and 4 reacted with diphenyl-2-pyridylphosphine (PPh2Py) to give neutral κ1-P bonded complexes [RuCl(CO)(κ1-P-PPh2Py)2(HL1)] (7), and [Ru(κ1-P-PPh2Py)2(HL1)2] (8). Complexes 1-8 have been characterized by analytical, spectral (IR, NMR, and electronic absorption) and electrochemical studies. Molecular structures of 1, 2, 4, and 7 have been determined crystallographically. Crystal structure determination revealed coordination of the mercapto-thiadiazole ligands (HL1-HL3) to ruthenium as κ2-N,S-thiolates and presence of rare intermolecular S-S weak bonding interaction in complex 1.  相似文献   

10.
Schiff-base copper(II) complexes were prepared using macrocyclic ligands, synthesized by condensation of diethylmalonate with Schiff bases derived from o-phenylenediamine and Knoevenagel condensed β-ketoanilides (obtained by the condensation of acetoacetanilide and substituted benzaldehydes). The ligands and their copper complexes were characterized by microanalytical, mass, UV–Vis, IR, 1H-NMR, ESR and CV studies, as well as conductivity data. Microanalytical, mass and magnetic moment analyses are consistent with formation of monomeric [CuL]Cl2. Spectral studies indicate square-planar geometry around copper. The smaller grain sizes found from XRD data suggest that these complexes are polycrystalline with nanosized grains. The SEM images of [CuL1]Cl2 have leaf-like morphology. The in vitro biological screening of the investigated compounds against the bacteria Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa and Staphylococcus aureus and fungi Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans were tested by the well diffusion method to assess growth inhibition. A comparative study of MIC values of the Schiff-base ligands and their complexes indicate that the complexes exhibit higher antimicrobial activity than the free ligands.  相似文献   

11.
Two new potentially octadentate N2O6 Schiff-base ligands 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)phenoxy)phenylimino)methyl)-6-methoxyphenol H2L1 and 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)-4-tert-butylphenoxy)phenylimino)methyl)-6-methoxyphenol H2L2 were prepared from the reaction of O-Vaniline with 1,2-bis(2′-aminophenoxy)benzene or 1,2-bis(2′-aminophenoxy)-4-t-butylbenzene, respectively. Reactions of H2L1 and H2L2 with copper(II) and zinc(II) salts in methanol in the presence of N(Et)3 gave neutral [CuL1]?·?0.5CH2Cl2, [CuL2], [ZnL1]?·?0.5CH2Cl2, and [ZnL2] complexes. The complexes were characterized by IR spectra, elemental analysis, magnetic susceptibility, ESI–MS spectra, molar conductance (Λm), UV-Vis spectra and, in the case of [ZnL1]?·?0.5CH2Cl2 and [ZnL2], with 1H- and 13C-NMR. The crystal structure of [ZnL1]?·?0.5CH2Cl2 has also been determined showing the metal ion in a highly distorted trigonal bipyramidal geometry. The electrochemical behavior of H2L2 and its Cu(II) complex, [CuL2], was studied and the formation constant of [CuL2] was evaluated using cyclic voltammetry. The logarithm value of formation constant of [CuL2] is 21.9.  相似文献   

12.
New mixed ligand complexes of the following stoichiometric formulae: M(2-bpy)2(RCOO)2·nH2O, M(4-bpy)(RCOO)2·H2O and M(2,4’-bpy)2(RCOO)2·H2O (where M(II)=Zn, Cd; 2-bpy=2,2’-bipyridine, 4-bpy=4,4′-bipyridine, 2,4′-bpy=2,4′-bipyridine; R=C2H5; n=2 or 4) were prepared in pure solid-state. These complexes were characterized by chemical and elemental analysis, IR and conductivity studies. Thermal behaviour of compounds was studied by means of DTA, DTG, TG techniques under static conditions in air. The final products of pyrolysis of Cd(II) and Zn(II) compounds were metal oxides MO. A coupled TG/MS system was used to analyse of principal volatile products of thermal decomposition or fragmentation of Zn(4-bpy)(RCOO)2·H2O under dynamic air and argon atmosphere. The principal species correspond to: C+, CH+, CH3 +, C2H2 +, HCN+, C2H5 + or CHO+, CH2O+ or NO+, CO2 +, 13C16O2 + and 12C16O18O+ and others; additionally CO+ in argon atmosphere.  相似文献   

13.
Ni(II) and Cu(II) metal complexes of simple unsymmetrical Schiff-base ligands derived from salicylaldehyde/5-methylsalicylaldehyde and ethylenediamine or diaminomaleonitrile (DMN) were synthesized. The ligands and their complexes were characterized by elemental analysis, 1H NMR, FT IR, and mass spectroscopy. The electronic spectra of the complexes show d–d transitions in the region at 450–600 nm. Electrochemical studies of the complexes reveal that all mononuclear complexes show a one-electron quasi-reversible reduction wave in the cathodic region. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff = 1.70–1.74 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts were also carried out. The in vitro antimicrobial activity of the investigated compounds was tested against human pathogenic bacterias such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli. The antifungal activity was tested against Candida albicans. Generally, the metal complexes have higher antimicrobial activity than the free ligands.  相似文献   

14.
Three polyamine ligands of N1-(2-nitrobenzyl)-N1-(2-aminoethyl)ethane-1,2-diamine (L1), N1-(2-nitrobenzyl)-N1-(2-aminoethyl)propane-1,3-diamine (L2) and N1-(2-nitrobenzyl)-N1-(3-aminopropyl)propane-1,3-diamine (L3) were synthesized and their cyclocondensation with 2-[2-(2-formyl phenoxy)ethoxy]benzaldehyde (L4) in the presence of various metal(II) ions was examined. These reactions only in the presence of a stoichiometric amount of cadmium(II) nitrate gave the related cadmium(II) macrocyclic Schiff-base complexes. In all the other cases no cyclic complexes have been obtained and metal(II) polyamines were the only products. The complexes have been studied with IR, 1H NMR, 13C NMR, DEPT, COSY, HMQC and microanalysis. The crystal structures of [Cd(NO3)(L5)(μ-NO3)Cd(NO3)(L5)]0.5Cd(NO3)4 (1) and [CdL5(NO3)(CH3OH)]ClO4 (2) have been also determined.  相似文献   

15.
The reaction of dichlorostannanes R2SnCl2 (R=Me 1, Bun 2) with piperazine ligand in molar ratio 1:2, in dry methylene dichloride, in an inert atmosphere leads to the synthesis of R2Sn(C4H9N2)2(R=Me 1, Bun 2). In a similar manner, The reaction between Ph2SnCl2 and piperazine in dry ethanol in molar ratio 1:1 produces [Ph2Sn(C4H8N2)]2 (3). The yields of these new products were excellent and they have been fully characterized by FT-IR, UV–Vis, multinuclear (1H, 13C, 119Sn) NMR spectroscopy and mass spectrometry, as well as elemental analysis. The spectroscopic results indicate that the piperazine ligand is coordinated to tin atom of organotin moieties, through the nitrogen atoms. Furthermore, the ligand behaves as a bidentate fashion in (1) and (2) and gives 1:2 substitution products, while in the complex (3) the two six-membered rings bind in bidentate-chelate forms between the two Sn atoms.  相似文献   

16.
Some new unsymmetrical tetradentate Schiff-base ligands, (N-salicylidene-N′-pyrrolidene)-1,2-ethylenediamine(H2salpyren) (H2L1), (H2Mesalpyren) (H2L2), (H2phsalpyren) (H2L3), (N-salicylidene-N′-pyrrolidene)-1,3-propylenediamine (H2salpyrpd) (H2L4), (H2Mesalpyrpd) (H2L5), (H2phsalpyrpd) (H2L6) and their Ni(II) and Cu(II) complexes were synthesized and characterized by elemental analyses, IR, UV-Vis, 1H NMR and mass spectra and magnetic moments. Possible structures of these complexes have been proposed. The thermodynamic formation constants of the complexes were determined spectrophotometrically at constant ionic strength 0.1?M (NaClO4), at 25°C in methanol.  相似文献   

17.
An efficient method was developed for the preparation of a series of zinc Schiff base complexes. Introduction of a pyridyl group as a bridging unit as well as incorporation of ethynyl and electron-donating groups into the salicylidene moiety of these complexes moderately enhances the photoluminescence intensity and quantum yield. Electron-rich palladium groups possibly influence the photophysical character through the bridging C[triple bond]C bond. The crystal structure of the pyridine adduct of a salen Zn complex is determined by X-ray diffraction analysis.  相似文献   

18.
Potassium 1,3-dipyrrolidinopropan-2-O-xanthate (LK), and its complexes with Co(II), Ni(II) and Cu(I) have been prepared and characterized as [CoL2(H2O)2]?·?2H2O, [NiL2(H2O)2] and CuL?·?2H2O by FT-IR, 1H and 13C NMR spectroscopies, elemental analyses, magnetic susceptibility and TGA techniques.  相似文献   

19.
Summary The reaction of nickel(II) salts with 2-picolyl- and 2,6-lutidyl-phenylketone benzoylhydrazone and theirp-nitro- andp-methoxy-derivatives were carried out and the compounds characterized on the basis of analytical and spectral data.  相似文献   

20.
The syntheses of platinum(II) complexes of bis(dimethylphosphinylmethylene)amine and bis(aminomethyl)phosphinic acid were investigated. In the case of bis(dimethyl-phosphinylmethylene)amine the reaction with K2[PtCl4] yields the potassium amino-trichloroplatinate K[PtCl3L] (L?=?bis(dimethylphosphinylmethylene)amine), which was characterized by multinuclear (1H, 13C, 31P, and 195Pt) NMR spectroscopy in solution. Bis(aminomethyl)phosphinic acid reacts with K2[PtCl4] under strictly controlled pH conditions to give colorless crystals of the cisplatin analog K[PtCl2L′] (L′?=?bis(aminomethyl)phosphinate). This complex was characterized by multinuclear NMR spectroscopy in solution as well as by single-crystal X-ray diffraction in the solid state. The bis(aminomethyl)phosphinate coordinates to platinum via both amino functions, thus acting as a chelating ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号